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Geometric Analysis of a Capture Basin
Application to cheese ripening process

Salma Mesmoudi · Isabelle Alvarez · Sophie
Martin · Mariette Sicard · Pierre-Henri Wuillemin

Abstract This paper addresses the issue of analysing the results given by viability sets,
which represent all the viable states of a dynamical system. Viability sets and capture basin
are a relatively new method to study complex dynamical systems, focusing on the preser-
vation of some properties of the system (constraints in the state space) rather than on the
possible stable states and equilibria. The viability set delimits the area of the state space
where there is always a list of controls that allows the system to verify indefinitely the con-
straints. A viability set represents a huge amount of information about the system it studies.
We propose here a geometric study of viability sets. This study is applied to the viability
tube (the sequence of viability set over time) of a food process.

Keywords Geometric Analysis · Viability · Food processing

1 Introduction

Sets play an increasing role in complex system analysis. Actually, considering a controlled
dynamical system facing viability constraints, the viability set [1] gathers all states from
which there exists at least one control function that allows the contraints to be satisfied un-
definitely or for a given time horizon. Thus, computing such a viability set enables to answer
common questions such that ”what are the system configurations that allow its persistence”
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and ”which controls have to be applied to remain in the viability set”. When moreover ob-
jectives are pursued, the capture basin set gathers all states from which there exists at least
one control function that allows reaching these objectives without violating the constraints.
Thus, computing such a capture basin set enables to answer common questions as far as
complex controlled systems are concerned such that ”what are the system configurations
that allow its persistence until its goal achievement” and ”which controls have to be applied
to really reach these goals”.

For instance, thanks to viability or capture basin set computation, Aubin et al.[2] studied
the conditions of French pension system durability ; Bonneuil and Müllers (1997) [3] the
conditions of several species coexistence ; Béné et al. (2001) [4] the configurations to avoid
to prevent irreversible non-renewable resources overexploitation ; Mullon et al. (2004) [5]
the fishing quotas to lay down to prevent some species extinction. In complex technical pro-
cess field, viability or capture basin sets are used to study the control of highway traffic [6]
or air traffic [7] and also for the food process of cheese ripening [8].

Viability and capture basin sets are subsets of the state space. They are computed thanks
to viability algorithms (Saint-Pierre 1994 [9], Deffuant et al. 2007 [10]). In Saint-Pierre’s
algorithm, these sets are approximated by points on a grid, in Deffuant et al. ’s one, their
boundary is approximated by a support vector machine. The sensibility towards some dy-
namics parameters of a particular viability set was studied by Bonneuil and Saint-Pierre
(2000)[11].
Beyond sensibility analysis, the shape study of viability and capture basin sets could provide
useful information about the robustness to disturbance or uncertainties of a particular state
or configuration according to the possibility of maintaining viability or reaching the pursued
goal. Such a geometric study could determine if a state is close to the set boundary, and also
the directions at risk. At a trajectory level, it would allow to define several robustness indi-
cators, depending on the risk perception of the operator. At the viability set level, it could
highlight areas where the process is more sensitive to perturbation, and consequently, where
it should be monitored carefully.
In this paper, we show that such a geometric analysis of viability or capture basin sets is
based on the computation of both the distance to the set boundary and the projection onto
this boundary. Optimal algorithms for the Euclidean distance transform (EDT) in arbitrary
dimension have been developed for morphological mathematics and image analysis purpose.
We adapt one of them [12] to propose methods and algorithms to carry out the geometric
analysis of viability or capture basin sets. In particular, we can evaluate the resilience of a
controlled dynamical system, that is its capacity to maintain given properties ; Martin (2004)
[13] proposed to evaluate resilience of some system properties as the inverse cost to return
to the viability set associated with these properties, here, we base the resilience definition on
the distance to the viability set boundary along the possible trajectories. We demonstrate the
usefulness of our methods and algorithms by applying them to the viability sets provided by
cheese ripening analysis mentioned above.

This paper is organized as follow: Section 2 presents the geometric method used to anal-
yse these sets : the local and global indicators, especially the definition of the resilience of a
trajectory based on the distance to the viability set boundary. It also presents the algorithm
to compute this distance and the projection onto the boundary. Section 3 develops the cod-
ing and study of this algorithm, in order to show its strength and limits. Section 4 shows the
result of the geometric study for the cheese ripening process after a brief description of the
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problem of management of a complex process of cheese ripening, and the viability tube that
was built to represent the information available on the process.

2 Geometric Analysis of a viability set

2.1 Geometric indicators

Each state in the viability set is a viable state, which means that there exists at least one
sequence of controls that enables the system to stay in the constraint set indefinitively. How-
ever, the situation of the viable states can be very different from one another.

For example, Figure 1 shows the viability set for the eutrophication lake problem. Clear-
water (oligotrophic) lake can become turbid (or in a eutrophic state) with an excess of phos-
phorus. A simple model (see [13] for more details) can be used to determine whether a lake
can remain in an oligotrophic state. L is the amount of phosphorus inputs and P the phospho-
rus concentration in the lake. Agriculture requires a minimum value for L. The oligotrophic
state requires a maximum value for P. Regulation laws are constraints on dL

dt . The viability
kernel is the subset of the (L,P) plane that gathers all states (L,P) such that there exists at
least one regulation law that allows the oligotrophic state to be maintained. In this example,
it is easy to see that, although points A and B are both viable, the state of the lake at point B
is more critical than at point A, because it is closer to the boundary of the viability set.

In the same line of reasoning, trajectories inside the viability set can also be very dif-
ferent from one another. Figure 1 shows two trajectories stemming from point A. These tra-
jectories stay for ever in the viability set. But trajectory u1, although always viable, comes
very close to the boundary at some points. On the contrary, trajectory u2 stays far from the
boundary.

Geometric indicators simply focus on these particular aspects.

2.1.1 Local indicators

A viability set can be seen as a two-classes classification system: Viable states are inside the
viability set. The decision boundary (the boundary of the inverse image of the class “viable”
in the input space) is the boundary of the viability set. Therefore works on explanation of
the result in classification systems can be usefully adapted to viability set. In particular, the
distance to the decision boundary and other geometric concepts can be used to give relevant
information about the situation of a particular state or case (see [14])

Distance and projection. The distance to the viability set boundary Γ is a usefull in-
dicator of the robustness of a state to pertubation or uncertainties on the state variables. If
a perturbation is applied to the system in state x, as long as its size is smaller than d(x,Γ ),
the new state of the system will still be inside the viability set. Consequently, the distance to
the boundary can be seen as a measure of the robustness of a state to perturbation, error of
measurement or uncertainties.

We note p(x) a point of the boundary for which the distance d(x,Γ ) is reached (for
the Euclidean distance it is the orthogonal projection). It gives the direction and size of the
smallest perturbation (the sensitive move) to apply at state x to move the system outside the
viability set.
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Fig. 1: Viability set of the lake eutrophication problem in the (L,P) (phosphorus input, total phosphorus)
plane ([13]), and distance contour lines. The boundary of the viability set is delimited by a black plain line.
The Maximal maximal ball is centered on point M. The constraints set is delimited with red dashed lines. A
and B are example of viables points. u1 and u2 are possible trajectories stemming from A.

Skeleton. The skeleton S of a viability set V is the set of the centers of all maximal
open balls in A (see [15] for a study of its topological properties). Maximal open balls are
topological balls which are included in the viability set V and are maximal (they are not
included in any other ball inside the viability set). Therefore the states of the viability set
that belong to the skeleton are locally the farthest states from the boundary of the viability
set. They could be useful to propose directions of move (with respect to the dynamics) in
order to increase the robustness.

As viable states with at least two projection points constitute a dense subset of the skele-
ton, it is interesting to compute this subset of the skeleton.

2.1.2 Resilience of a trajectory

In ecology, the resilience measures the capacity of a dynamical system to maintain given
properties. Here the distance to the viability set boundary gives a geometric definition of
resilience inside the viability set. Since the distance map gives the resilience at each point, it
is possible to use this information to define resilience indicators at the level of a trajectory.
Several definitions can be proposed, depending on the risk perception of the manager (it is
well known in decision psychology studies, like in [16], that the risk of adverse decision can
be considered in many different ways).

For example, the most risk-adverse indicator is the min over the trajectory.

Definition 1 Resilience of a trajectory.
Let u : t 7−→ u(t) be a trajectory in the viability set V . We note ΓV its boundary. The resilience
value of u is r(u) = mint{d(u(t),ΓV )}.
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Other definitions could be considered, for example, with the mean value of the distance
instead of the minimum.

2.1.3 Global quality indicator of a viability set

Some geometric indicators give usefull information about the feasibility of controlling the
system to verify the constraints indefinitely.

Relative volume. The size of the viability set compared with the size of the constraint
set is a first basic indicator. Since the viability set V is a subset of the constraint set K, it is
the fraction of the hypervolumes of both sets: vol(V )

vol(K) .
But this relative volume can gives misleading information about the structure of the

viability set, even when the viability set is a simply connected set (which means roughly
that it has no holes). The same volume can enclose rather different shapes, for instance in a
dimension d space, a hypercube with side 2r and a hyperrectangle with one side size 2αr
and all other side 2r

(α)
1

d−1
with α >> 1. In the first case, the distance to the boundary of the

hypercube reaches its maximum at the center with a value of r. In the second case, the points
of the hyperrectangle cannot be farther from the boundary than r

(α)
1

d−1
.

Maximal maximal ball. The maximal maximal ball is the maximal ball with the largest
radius among maximal balls. Its center is the farthest point of the viability set from the deci-
sion boundary. The largest the radius of the maximal maximal ball is, the more robust is the
system to perturbation: among all the closed sets with the same inner volume, the maximum
value of the distance to the boundary is reached for the closed ball, as it is illustrated on
Figure 2.

Fig. 2: Maximum (Euclidean) distance to the boundary for a hyperrectangle RV and a hypersphere SV of same
volume V .

A relatively large maximal maximal ball, as in Figure 1 suggests that it should be easy
to find control sequences that guarantee that the viability constraints are verified over time.

2.2 Projection algorithm

2.2.1 Distance transform map algorithm

When the decision boundary Γ is described by an analytical formula, or by a set of con-
straints, it is possible to compute the exact value of d(x,Γ ) for all points of the input space,
with efficient algorithms. It is the case for axis-parallel decision trees, where the distance
is computed in O(d.n), with n the number of leaves and d the dimension of the space (see
[14]).
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When the decision boundary is described with an implicit formula or in extension, as
it is the case with viability sets, we propose to approximate the distance to the decision
boundary in a discrete space. A unit hypercube in the state space E is discretized onto a Nd

points d-dimensional grid G in Zd . The discretized boundary Γ̂ ⊂ G is defined as follows:
let x̂ ∈ G and let x be its corresponding point in E,

x̂ ∈ Γ̂ if and only if d(x,Γ )≤
√

d
N−1

(1)

(
√

d is the diagonal length of the unit hypercube and (N−1) the rescaling coefficient).
Basically, the distance is computed for the points of the grid. This distance is assigned

to the nearest points, so the distance map is piecewise constant. Better approximation could
be used, taking into account several points of the grid to assign a value at some point.

Optimal algorithms for the Euclidean distance transform (EDT) in arbitrary dimension
have been developed for morphological mathematics and image analysis purpose (see [12]
for references). In particular, algorithm from [17] computes the exact EDT in linear time
with the number of points where the distance is computed, which is optimal.

Of course these algorithms are exponential with the dimension, but as it is shown in next
section, it is possible to use them easily up to dimension 7.

Algorithm 1 EuclideanDistanceToSet(G, f̂ )
Data: A grid G of Nd points in Zd , f̂ a mapping from G to {0,1}. Γ̂ =

{
x/ f̂ (x) = 0

}
Result: The Euclidean distance g to Γ̂ for each point of G.
1. Step 1
2. for (x2, ...,xd) ∈ [0,N−1]d−1 do {
3. begin FirstAxisDistance
Distance calcul following the first axis

4. for i ∈ [0,N−1] do {
5. g(i,x2, .,xd)←min0≤l<N{|i− l|/ f (l,x2, .,xd) = 0} }
(with min( /0) = ∞)
6. end FirstAxisDistance
7. Step 2
8. g1(x1, ...,xd)← g(x1, ...,xd)

2

9. for k ∈ [2,d] do {
10. begin AdditionalAxisSqDistance
assignment following the parabolas envelope

11. for (x1, .xk−1,xk+1, .xd) ∈ [0,N−1]d−1 do {
12. for i ∈ [0,N−1] do {
13. gk(x1, .xk−1, i,xk+1, .xd)←

min0≤l<N{(i− l)2 +gk−1(x1, ., l, .,xd)} }}
14. end AdditionalAxisSqDistance }
15. return g(x) =

√
gd(x1, ...,xd)

FirstAxisDistance procedure is very simple and in linear time in the number of grid points,
actually 2Nd . AdditionalAxisSqDistance is much more complicated and requires explana-
tion. It is detailed in algorithm (2). It is in O(Nd), so the complete algorithm is in O(d.Nd).
The basic idea, coming from [18], and detailed in [17] for dimension 2, consists in consid-
ering at step k the column of distance computed at step k−1. If we note:
(X , i) = (x1, ..., i,xk+1, .xd), we can see that at step k the minimum (square) distance at point
(X , i) is at most gk−1(X , i). Thanks to Pythagore, it is also at most gk−1(X , l)+(i− l)2 for 0<
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l < N, and the min value gives the result. But the computation of all these values is subopti-
mal. On the other hand, considering the set F of parabolas

{
FX

l (i) = gk−1(X , l)+(i− l)2
}

(0 ≤ l < N), the result of AdditionalAxisSqDistance procedure is given by the lower enve-
lope of F . The key point is the fact that two parabolas in F intersect at most once in Z2,
and that the intersection is very easy to compute: FX

l intersect FX
j when 2(l− j) divides

(l2− j2 +gk−1(X , l)−gk−1(X , j)). This is the reason why it is optimal: The computation of
the envelope for a given X is reduced to a matrix searching problem, which complexity is
linear in this totally monotone case (see [18],[19]), so the overall complexity is in O(d.Nd).
It is also the reason why it can be modified for other distances, such as the sup norm, as long
as this key point is maintained.

Algorithm 2 AdditionalAxisSqDistance(gk−1)
Data: The square Euclidean distance gk−1 computed on the k−1 first axes for each point

of G
Result: The square Euclidean distance gk computed on the k first axes for each point of G.
1. for X = (x1, .xk−1,xk+1, .xd) ∈ [0,N−1]d−1 do {
2. q← 0;s[0]← 0; t[0]← 0
s is the stack of parabolas

t the stack of parabolas intersections

3. for i ∈ [0,N−1] do {
4. while q > 0 and FX

s[q](t[q])> FX
i (t[q]) do {

5. q← q−1 } the present parabola dominates

7. if q = 0 then {
8. q← 0;s[0]← i }
present parabola replaces all

9. else {
10. w← 1+ arg(intersection(FX

s[q],F
X
i ))

11. if w < N then {
present parabola replaces all (or is recruited) from q+1
12. q← q+1; s[q]← i; t[q]← w }}}
13. for i from N−1 to 0 do {
14. gX

k (i)← FX
s[q](i)

assignment following the parabolas envelope

15. if i = t[q] then {
16. q← q−1 }}}
17. return gk

2.2.2 Projection onto the decision boundary

The objective is to compute the projection onto the decision boundary for each point of the
grid. With the projection point, it is possible to give the smallest perturbation that will lead
the input state outside the viability set.

Points of Γ̂ are labeled. When an intermediate value of the (square) distance is computed
or modified, the label of the original point of Γ̂ is also transfered. This induces a change in
both procedures of Algorithm 1. FirstAxisDistance procedure returns the label of the nearest
point along the first axis together with the distance. Line 5 of algorithm 1 becomes:
5. { j← argmin0≤l<N{|i− l|/ f (l,x2, .,xd) = 0};
g(i,x2, .,xd)← |i− l|;
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p(i,x2, .,xd)← label( j,x2, .,xd) }
AdditionalAxisSqDistance procedure transfers the label of the nearest point when the square
distance is updated. Line 13 of algorithm 1 becomes:
13. { j← argmin0≤l<N{(i− l)2 +gk−1(x1, ., l, .,xd)};
gk(x1, .xk−1, i,xk+1, .xd)← ( j− l)2 +gk−1(x1, ., j, .,xd) ;
p(x1, .xk−1, i,xk+1, .xd)← p(x1, .xk−1, j,xk+1, .xd)}
With more details in algorithm 2 we have the following modifications: The Data line in-
cludes p, and the assignment (lines 14, 16) modifies p:
14. { gX

k (i)← FX
s[q](i)

pX
k (i)← pX

k (s[q])}
16. { q← q−1
pX

k (i)← pX
k (i), pX

k (s[q])}
This modified algorithm, noted NearestPointToSet, gives the nearest point P̂ of Γ̂ for each
point of the grid G. This point is used to provide an approximation of the projection onto Γ .

The complexity is in O(d.Nd). Moreover, the algorithm can be easily parallelized for up
to Nd−1 processors.

3 Coding and study of the projection algorithm

The coding of the algorithm requires the use of at least 2 matrices: the first matrix serves
to calculate the distances, the second matrix is for the projections. In order to use the same
algorithm for all kind of viability sets in different state spaces, in particular with different
dimension, we chose to use a Graphical Universal Model ”aGRuM” library 1.

3.1 A Graphical Universal Model library

aGrUM is a C++ library designed for easily building applications using graphical models
such as Bayesian networks, influence diagrams, decision trees, GAI networks or Markov
decision processes. It is written to provide the basic building blocks to perform the following
tasks :

– graphical model learning / elicitation,
– inference within the graphical model,
– planification.

The aGRum part that interests us in this work is the branch MultiDimImplementation. In
fact, A MultiDimImplemenetation∗ < T DATA > ∗ is the abstract base class for all mul-
tidimensional implementation of container of T DATA. Its purpose is to implement basic
algorithms with no regard to how the storage is done (tree or matrix or . . . ).
Thus, the use of aGRuM allows us to have an optimized tool to manage:

– the addition or suppression of the dimension
– cross multidimensional structure

So, we obtain a code optimization: to cover a multidimensional structure we use a single
loop. Also, Thanks to the librairy aGRum, the generation of the various tested forms (hy-
perrectangle, hyperplan) was easy.

1 http://agrum.lip6.fr



9

Table 1: nomber of points for each dimension : Search espace and hypercube

search space 5 7 10 15 17 20 25 30 35 40 50 60 70 80

hypercube 3 dim - - - - - 10 - 15 - 20 25 30 35 40

hypercube 4 dim - - 5 7 - 10 13 15 17 - - - - -

hypercube 5 dim 3 5 5 7 8 - - - - - - - - -

Fig. 3: Evolution of execution time according to: the points number by matrix (a), dimensions number (b)

3.2 The theoretical complexity of the algorithm :

We have shown in paragraphe 2.2. that the algorithm complexity is in O(d.Nd). To confirm
these theoretical results we applied the algorithm to different matrices where the bondary is
represented by an hypercube.

This experiment is realized for 3 values of the dimension(see Figure 3(a)). To increase
the size of the research space we have to vary the number of points for each dimension from
20 to 80 points whene we are in three dimensions, between 10 to 35 with 4 dimensions and
5 to 17 for 5 dimensions(see Table 1). The dimensions of the hypercube also vary according
to the size of the research space.For each value of the dimension, the algorithm is linear in
the number of points for which the distance and projections are computed.
The maximal number of point that the algorithm is able to treat in an example of hyper-

ectangle (15 points for one side and 10 points for the other sides) is equal to 148035889 (6
dimensions, 23 points for each dimension) with a time of execution of 40201.175 s.
In the same way, to study the complexity of the algorithm with regard to the number of

dimensions, we apply it to the example of a hyperplane with every time a different number
of dimensions d. The number of dimensions varies from 2 to 7 (see Figure 3(b)) and for
each dimension we have 11 points. The computer we used for these tests is a Pentium(R) 4
with CPU of 3.60 GHz. We stopped tests with d = 7 because beyond this limit (d = 8) the
number of points is over 214 million consequently the capacity in memory of this computer
is widely surpassed. In the Figure 3 (b), we represent the time evolution (ms) execution of
the algorithm with a logarithmic scale according to the number of dimensions. As we can
notice it, this evolution is exponential with comparison with the number of dimensions. All
these results confirm a complexity of O(d.Nd).
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4 Application to the cheese ripening viability tube

4.1 A viability tube to represent the cheese ripening process

The cheese mass loss during ripening process was modeled by Helias (2007).The cheese
mass loss is linked to the evaporation phenomena and the carbon loss through respiration
of microorganisms. The evaporation increases with lower relative humidity in the ripening
chamber and higher temperature on the cheese surface. This temperature changes with the
ripening chamber temperature, evaporation phenomena and respiration of microorganisms
([8]).

4.2 Geometric analysis of the ripening process

The viability algorithm was used to compute the viability tube of the ripening cheese pro-
cess. We then applied the distance and projection algorithm to this viability tube.

– Visualization of the distance maps of the ripening process
– Global indicators for the viability set
– Study of robustness of two experimental trajectories with the geometrical model.

4.2.1 Complete tube

The data we used in this work are organised on 11 days. The viability set of the 12th day is
defined by the target itself. The dimension of the state space is 3. Each state is defined by the
surface temperature (T ◦) of the cheese, the concentration of the micro-organisms (breathing
in g/m2/ jour) and the mass of the cheese in g.

Complete tube robustness

to better show the successive viability sets, we eliminated the temperature dimension (the
smallest one) and we juxtaposed the days (see Figure 4) from the 1st day to the 11th one.
All the shown points are the viable points, thus we are sure to be inside the viability set. The
colours show the distance of a state with regard to the bondary. The more red the colour is
the more robust the state is (far from boundary), on the contrary, the more blue the colour
is, the less robust the state is (closer to the boundary). Some boundaries of the viability
set, that are normal to axes, represent the boundary of the exploration set. They are not
considered as a true boundary for the computation of the distance map (the states that are
not considered, across the hyperplanes, are supposed to be viable). The first day viability set
is reduced to a one-dimension set, since the breathing dimension is not to be considered (the
microorganisms have not germinated yet, so they can’t breathe). So, we consider that all the
proposed masses are viable because it’s the starting day. From the 2nd day and until the 5th
day (see Figure 4), we can notice that the most robust states are localised on the right corner
of the matrix, however, the other robust states are added during these 5 days in the form of
a beam ( yellow color) which extends on towards the centre of the matrix. It is confirmed
by the results of the percentage of the viable states with regard to the totality of states (see
Figure 5). Indeed, for these 5 days, the percentage of the viable states increases from day to
day, this percentage moves on from 1 % the first day to 89 % the 5th day. Also this increase
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Fig. 4: Square distance map of the viability tube (12 viability sets corresponding to the different days of the
process).



12

Fig. 5: Ratio of the number of viable states

of the viable states percentage confirms that during these 5 first days the process is robust and
numerous trajectories are possible. During the 6th day, the most robust states concentrate in
the middle of the matrix without that the percentage of viability changes considerably (88
%). This change of geometrical localization of the most robust states can be explained by
the beginning (see table 1) or the sudden increase of the breath (see table 2). Consequently
we can say that during the first 5 days the determining factor is the mass of the cheese and
from the 5th day another factor becomes so important: microorganisms breathing. Besides,
from the 6th day the process begins converging towards the target. This convergence is
represented by a concentration of robust states in the middle of the matrix in a vertical
beam translating a loss of the mass and an increase of the breathing of the microorganisms.
The viability percentage decreases from day to day and this decrease can attain in certain
days 17%. The procedure is less and less robust: few trajectories are possible. At the end of
this process, the convergence towards the target is represented by a gap of the robust states
towards the left corner of the matrix. This gap is due to the loss of the mass until it reaches
the weight specified in the constraints of the target. At this stage (11th day), the percentage
of the viable points reaches its lowest level: 17 %. Concerning the target(12th day, black
bounding box on the Figure 4), its caracteristics(a breath included between 23 and 50, and
a mass between 250g and 270g), gather states that are considered as the most robust by the
geometrical modelling. So we can notice that certain values of the breath do not exist any
more at the level of the 11th day (the black frame exceeds the limit of the 11th day).

Trajectories robustness

We used the geometric study to give robustness information on two trajectories. The first
one (see table 1) is generally followed in real factories. It is organised over 11 days. The
second one (see table 2) was obtained by the GMPA laboratory of INRA.

For each day, the distance map gives the distance to the viability set boundary. For each
of the trajectories, we note the state that is reached following the corresponding trajectory.
A viable state is characterized by its temperature (T ◦), its mass and its breath. The distance
to the viability set boundary is registrered, with the radius of the maximal maximal ball for
this day. Distances in these tables are the square root of distances represented in Figure 4.
According to the table 1, we can notice that with regard to the calculation of the distances
on the bordary the states of the first trajectory remain more or less taken away from this
bordary and are located in the maximal maximal ball calculated for every day, so as 10th
and 11th days when both states approach dangerously the bondary. Their distances are 9
and 6 of the bondary respectively. The second trajectory is organized in only 8 days; Its 8
states are characterized by an average distance to the boundary. Thanks to the calculation
of the maximal ball radius for every matrix, we are capable of proposing trajectories where
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every state is far as possible from the viability set boundary and approaches as much as
possible of the skeleton calculated from the 2-projections states. These trajectories will have
the characteristic to resist perturbation.

Table 2: Nominal trajectory

Days W T ◦ B d mmbr

1 284 285 0 21.21 31.4
2 280 284 0 23.6 34.19
3 278 285 0 22.5 32.01
4 276 285 0 21.56 32.01
5 274 285 0 20.64 32.01
6 271 285 5 17.20 25.96
7 270 285 13 16.03 23.34
8 267 285 24 13.04 19.10
9 264 285 35 11.79 18.16
10 260 285 37 9 16.61
11 255 285 33 6 15.65

Table 3: experimental trajectory

W T ◦ B d mmbr

284 285 0 21.21 31.4
280 285 0 23.43 34.19
279 286 1 23 32.01
278 287 4 22.30 32.01
276 287 12 18.50 32.01
274 286 21 14.50 25.96
272 286 37 13.30 23.34
269 282 37 15.65 19.10
− − − − −
− − − − −
− − − − −

5 Conclusion

The geometrical modelling of viability set allowed us to determine the robust states of the
process and also to identify the phases of the dynamic where several trajectories are possible
and on the contrary the phases of constriction where few trajectories are possible. Thanks to
this geometrical modelling and to the calculation of projections of states on the viability set
boundary, the algorithm is capable of producing the skeleton of the tube. This skeleton will
allow us in future work to propose more robust trajectories.
Thanks to the complexity mastered by the algorithm, we also intend to introduce the controls
as state variables in order to take into account the uncertainty on the control parameters as
well.
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