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For 20 years many authors have attempted to model language competition. Some models
involve two different languages, others include also a bilingual population. The issues are
to understand one language extinction or to determine in which parameter range coexis-
tence is possible. A key parameter is the prestige of one language compare to the other.
If this parameter remains constant, coexistence is not sustainable. However, prestige
may vary with time. In this article, thanks to the viability theory concepts and tools, we
study a set of prestige variations which would allow language coexistence in presence of
a bilingual population. Among this set, we emphasise slow viable evolutions with the low-
est prestige variations that guarantee coexistence.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Many languages might become extinct [1]. It is, therefore, an important challenge to understand language dynamics, and
to recognise whether there are measures that can help us preserve some of them. The situation has attracted the interest of
many researchers who have analysed language dynamics and developed models of the evolution of the number of their
speakers. Among them, Abrams and Strogatz [2] have proposed a mathematical model for studying language competition.
The model obtains a good fit to a number of empirical data sets: it satisfactorily fits historical data on the decline of Welsh,
Scottish Gaelic, Quechua and other endangered languages, predicts that one of the competing languages will inevitably die
out. Actually, the model predicts that whenever two languages compete for speakers, one language will eventually become
extinct, the language that dies depending on the initial proportions of speakers of each language and their relative prestige.

Bilingual societies do in fact exist.
In the case of two mutual unintelligible languages, when one language becomes dominant due to political, economical or

social advantages, bilingualism may be a transitional stage toward the extinction of the subordinate language [3]. Baggs and
Freedman [4] have developed a model for the dynamics of interactions between a bilingual component and a monolingual
component of a population. Conditions under which both components of the population will approach a unique and stable
steady state were investigated. This two-dimensional model is based on Lotka–Volterra and Holling’s predator–prey para-
digms. Wyburn and Hayward [5] identified four possible scenarios in the long-term future of the bilingual population
depending on the model parameter values. El-Owaidy and Ismail [6] have extended the model to describe the dynamics
of the interactions of a population with three monolingual components and a component which is trilingual in these three
languages and derived criteria for persistence or extinction of these groups.

Bilingual societies are thought by Abrams and Strogatz [2] to be, in most cases at least, unstable situations resulting from
the recent merging of formerly separate communities with different languages. However, Mira and Paredes [7] have
. All rights reserved.
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extended the Abrams and Strogatz’s work to model bilingualism explicitly, accounting for the fact that some individuals may
speak both of the competing languages. They propose a three-dimensional model which variables are the expected aggregate
behaviour of the whole population split into three groups: monolingual speakers of the first language, monolingual speakers
of the second language and bilingual speakers. They suggest that stable bilingualism may be possible, and that whether it
occurs or not may depend on the degree of similarity between the two competing languages. Castello et al. [8] also propose
a generalisation of the microscopic version of the Abrams and Strogatz’s model for two socially equivalent languages, to in-
clude the effects of bilingualism. A global consensus state is reached with probability one. Within the assumptions and
limitations of their model, their results imply that bilingualism is not an efficient mechanism to stabilize language diversity.

Minett and Wang [9] propose a slightly different model with the same three state variables as Mira and Paredes’ ones.
Guided by Crystal’s work [1] on the main mechanisms of intervention by which language coexistence may be attempted,
they consider the possibility of an evolution of the two languages relative prestige (the prestige was considered as a constant
parameter in the previously cited references). They define several prestige evolution functions and they study their influence
on the language coexistence.

The prestige measures the status associated to a language due to individual and social advantages related to the use of
that language, being higher according to its presence in education, religion, administration and the media. Modifying the
prestige of one language is one of the six main mechanisms of intervention identified by Crystal [1]. As Chapel et al. [10]
in the absence of bilingualism, we assume that public action can modify the prestige of a language, but that its variation
at each time step is bounded. In the context of the explicit modelling of a bilingual group, we aim at determining a set of
strategies that allow maintenance of both monolingual groups. This is an inverse problem different from Minett and Wang’s
problematic [9] that is the direct problem of the determination of the efficiency of predefined strategies.

We adopt a viability theory approach [11]: viability theory provides theoretical concepts and practical tools, to study the
compatibility between a control dynamical system and a subset in the state space; especially, a viability domain is defined as
a subset of the state space such that an evolution starting from it can be maintained inside it. The determination of a viability
domain also provides a regulation map that allows to build strategies to remain inside it; in the context of language main-
tenance, it provides sets of prestige variations according to the system state that allows coexistence of two monolingual
groups. To get familiar with this theoretical approach, with some concepts that are used and to have a more precise idea
of how selections of solutions are computed, the reader can consult Aubin et al. [12].

This paper is organised as follows: first, we introduce the language competition model with two monolingual groups and
a bilingual one with a brief stability analysis; then, we describe the constraint set defined by the coexistence criteria and how
to build inside it a viability domain thanks to the concept of contingent cone; finally, we derive the associated regulation
map, which allows to build strategies ensuring coexistence, the slow viable strategies in particular, that exhibit the lowest
prestige variations along the evolution.

2. The model description

In the Abrams and Strogatz’s model [2] and in those inspired from it, the assumption is made that the population size
remains constant. And, consequently, the variables are the proportion of different groups of speakers. The population is made
of two groups, the monolingual speakers of language A and the monolingual speakers of language B, and the model is one-
dimensional with rA the proportion of speakers of A (rB ¼ 1� rA). In the model including bilingualism, the population is
made of three groups, the monolingual speakers of language A, the monolingual speakers of language B, and the bilingual
speakers AB; and the model is two-dimensional with rA the proportion of speakers of A and rB the proportion of speakers
of B (rAB ¼ 1� rA � rB).

In any linguistic subpopulation, there are forces and influences which one group exerts on members of the other to switch
languages. In the Abrams and Strogatz’s model, the rate at which speakers of one language switch to become speakers of the
second language depends on the attractiveness of this second language. In their most general conception of attractiveness,
Abrams and Strogatz assume that a language has greater attractiveness the more monolingual speakers it has and the greater
its prestige is. They state PB!A, the fraction of group B that transfers to group A per unit time:
Please
Appl.
PB!A ¼ sAra
A: ð1Þ
sA denotes the prestige of language A, and a is a parameter that models how the attractiveness of A scales with the proportion
of speakers of A. The attractiveness of B to speakers of A can be stated similarly.

The rate of change of rA is given by
drA

dt
¼ rBPB!A � rAPA!B ð2Þ
(with analogous equation for drB
dt ).

Extending the Abrams ans Strogatz’s model by explicitly modelling bilingualism, and consequently introducing a third
class of speakers, AB, who speak both A and B, Eq. (2) becomes:
drA

dt
¼ rBPB!A þ rABPAB!A � rAðPA!B þ PA!ABÞ ð3Þ
(with analogous equations for drB
dt and drAB

dt ).
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The transitions A! B and B! A are exceedingly rare in practice [13]. We therefore model only transitions of the four
types A! AB;AB! A;A! AB, and AB! B as [8,9] (PA!B ¼ PB!A ¼ 0).

The moving rates depend on the Abrams and Strogatz’s definition of language attractiveness Eq. (1). As [8], we assume an asym-
metry between monolinguals and bilinguals: A! AB (resp. B! AB) at a rate proportional to the attractiveness of the monolingual
speakers of A (resp. B); AB! A (resp. AB! B) at a rate proportional to the attractiveness of the whole speakers of A, including the
bilingual ones (hence, some bilinguals can become monolingual speakers of A even if A has no monolingual speakers):
1 It s

Please
Appl.
PAB!A ¼ ð1� rBÞasA;

PA!AB ¼ ra
BsB:

ð4Þ
Consequently, the two-dimensional model is defined by

drA

dt
¼ ð1� rA � rBÞð1� rBÞasA � rAra

BsB;

drB

dt
¼ ð1� rA � rBÞð1� rAÞasB � rBra

AsA:

ð5Þ
For convenience, we will assume, that sA þ sB ¼ 1, allowing us to substitute sA ¼ s and sB ¼ 1� sA.

Remark 1. If the value of the prestige, s, is constant in �0; 1½, the dynamics (5) has three equilibria: ð0;1Þ and (1,0) which are
stable and ðrA;e;rB;eÞ;rA;e > 0;rB;e > 0 which is unstable. Consequently, one language is doomed to become extinct.

In this study, we consider that the prestige, s, can evolve (modified by public action for instance), but that its variation at
each time step is bounded. We also assume a kind of equivalence between the two languages in the ability of increasing their
prestige, so the lower bound of the set of admissible controls, U, is the opposite of its upper one:
ds
dt
¼ u;

u 2 U :¼ ½��u; �u�; �u > 0:
ð6Þ
We propose to find strategies on the prestige variations to maintain a given level of monolingual speakers in both languages,
r, that is to solve the following viability problem:
drA
dt ¼ ð1� rA � rBÞð1� rBÞas� rAra

Bð1� sÞ;
drB
dt ¼ ð1� rA � rBÞð1� rAÞað1� sÞ � rBra

As;
ds
dt ¼ u;

u 2 U

8>>>><>>>>: ð7Þ
and 8

8t P 0;

0 < r 6 rAðtÞ 6 1;
0 < r 6 rBðtÞ 6 1;
0 6 sðtÞ 6 1:

><>: ð8Þ
Necessarily, �u > 0 and 0 < r 6 0:5. In the following sections of this paper, we do not fix a value for r, but we consider that
reasonable values for this parameter are lower than 0.3.

Remark 2. Let the functions f1 and f2 defined on ½0;1�2 � R, and f defined on ½0;1�2 � R2 by:
f1ðx; y; zÞ :¼ ð1� x� yÞð1� yÞaz� xyað1� zÞ;
f2ðx; y; zÞ :¼ ð1� x� yÞð1� xÞað1� zÞ � xayz

ð9Þ
and

f ðx; y; z;uÞ :¼ f1ðx; y; zÞ; f2ðx; y; zÞ;uð Þ: ð10Þ
The control system ðU; f Þ defines the dynamics of the model:

ðr0A;r0B; s0Þ ¼ f ðrA;rB; s;uÞ;
u 2 U:

�
ð11Þ
1. The control system ðU; f Þ is Marchaud.1

2. The functions f1 and f2 have the following symmetry property:
f1ðx; y; zÞ ¼ f2ðy; x; ð1� zÞÞ: ð12Þ
atisfies the following conditions:
(a) GraphðUÞ is closed
(b) f is continuous
(c) the velocity subsets FðxÞ :¼ ff ðx;uÞgu2UðxÞ are convex
(d) f and U have linear growth.
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3. Building a viability domain

3.1. Definition of a viability domain and the viability theorem

We first recall the definitions of the contingent cone and the viability domain [11]. Let X be a finite dimensional vector
space.

Definition 1 (Contingent cone). Let K be a subset of X and x 2 K , the contingent cone TKðxÞ to K at x is the closed cone of
elements v such that
2 Let
3 Intð

Please
Appl.
lim inf
h!0þ

dðxþ hv ;KÞ
h

¼ 0: ð13Þ
If K is differentiable at x, the contingent cone is the tangent space.
Definition 2 (Viability domain). Let F : X,X be a non trivial set-valued map. A subset K � Dom2 ðFÞ is a viability domain of F
if and only if
8x 2 K; FðxÞ \ TKðxÞ– ;: ð14Þ

Aubin [11] also shows the link between viability domains and the existence of viable solutions.
Definition 3 (Viable function). Let K be a subset of X. A function xð:Þ from ½0;þ1½ is viable in K if 8t P 0; xðtÞ 2 K.
Definition 4 (Regulation map). Consider a system ðU; f Þ described by a feedback map U and dynamics f. We associate with
any subset K � DomðUÞ the regulation map RK : K,U defined by
8x 2 K; RKðxÞ :¼ fu 2 UðxÞjf ðx;uÞ 2 TKðxÞg:

It is worth noting that K is a viability domain if and only if the regulation map RK is strict (has nonempty values).
Theorem 1 (Viability theorem). Let us consider a Marchaud control system ðU; f Þ and a closed subset K � DomðUÞ of X. Let
FðxÞ :¼ ff ðx;uÞgu2UðxÞ. If K is a viability domain under F, then for any initial state x0 2 K , there exists a viable solution on
½0;þ1½ to differential inclusion:
For almost all t P 0; x0ðtÞ ¼ f ðxðtÞ;uðtÞÞ;
where uðtÞ 2 UðxðtÞÞ:

�
ð15Þ
Furthermore, any control function regulating a viable solution xð:Þ obeys the regulation law
for almost all t; uðtÞ 2 RKðxðtÞÞ: ð16Þ

Consequently, if the whole constraint set is a viability domain, whatever the initial state, there exists a control function

that governs an evolution which remains in this constraint set. If the whole constraint set is not a viability domain, finding a
subset which is a viability domain guarantees the existence of a viable evolution from any starting point inside it.
3.2. Geometric description of the constraint set associated with the coexistence of both monolingual groups

We denote by K the constraint set corresponding to the coexistence of both monolingual groups (Eq. (8)). Its boundary
denoted @K is the union of 5 faces with r 2�0; 0:3� (Fig. 1):

� F0 : fðrA;rB; sÞ 2 R3jrA P r; rB P r; rA þ rB 6 1; s ¼ 0g
� F1 : fðrA;rB; sÞ 2 R3jrA P r; rB P r; rA þ rB 6 1; s ¼ 1g
� F2 : fðrA;rB; sÞ 2 R3jrA P r; rB P r; rA þ rB ¼ 1; 0 6 s 6 1g
� F3 : fðrA;rB; sÞ 2 R3jrA ¼ r; rB P r; rA þ rB 6 1; 0 6 s 6 1g
� F4 : fðrA;rB; sÞ 2 R3jrA P r; rB ¼ r; rA þ rB 6 1; 0 6 s 6 1g

3.3. Intersection between the set-valued map describing the dynamics, F, and the contingent cones to the constraint set, TK

We define FðrA;rB; sÞ :¼ ff ðrA;rB; s;uÞ j u 2 Ug.
If ðrA;rB; sÞ 2 IntðKÞ,3 TKðrA;rB; sÞ ¼ R3 and consequently, TKðrA;rB; sÞ \ FðrA;rB; sÞ– ;.
F : X,X be a non trivial set-valued map, DomðFÞ ¼ fx 2 X such that FðxÞ– ;g.
KÞ :¼ fx 2 Kj9� > 0 such that Boðx; �Þ � Kg where Boðx; �Þ :¼ fy 2 Xjjjx� yjj < �g.
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We then study the intersection on the boundary @K of K. We first need to define the relative interior of a face, Fi, in @K : F
�

i

is defined as the relative complement in @K of the closure of the relative complement of Fi in @K. The closure of the relative
complement of Fi in @K is [j–iFj, so F

�
i ¼ fx 2 Fi j 8j – i; x R Fjg.

3.3.1. On faces F0; F1 and F2

– If ðrA;rB; sÞ 2 F
�

0; TKðrA;rB; sÞ ¼ R2 � Rþ, so 8u 2 ½0; �u� � ½��u; �u�; f ðrA;rB; s;uÞ 2 TKðrA;rB; sÞ.
– If ðrA;rB; sÞ 2 F

�
1; TKðrA;rB; sÞ ¼ R2 � R�, so 8u 2 ½��u;0� � ½��u; �u�; f ðrA;rB; s;uÞ 2 TKðrA;rB; sÞ.

– If ðrA;rB; sÞ 2 F
�

2; TKðrA;rB; sÞ ¼ fðx; y; zÞ 2 R3jxþ y 6 0g, so 8u 2 ½��u; �u�; f ðrA;rB; s; uÞ 2 TKðrA;rB; sÞ, since f1ðrA;rB; sÞþ
f2ðrA;rB; sÞ 6 0 for all u 2 ½��u; �u� when rA þ rB ¼ 1.

Then,

– If ðrA;rB; sÞ 2 F0 \ F2 and ðrA;rB; sÞ R F3 [ F4; TKðrA;rB; sÞ ¼ fðx; y; zÞ 2 R3 j xþ y 6 0 et z >¼ 0g, so 8u 2 ½0; �u� � ½��u; �u�;
f ðrA;rB; s;uÞ 2 TKðrA;rB; sÞ.
– If 8ðrA;rB; sÞ 2 F1 \ F2 and ðrA;rB; sÞ R F3 [ F4; TKðrA;rB; sÞ ¼ fðx; y; zÞ 2 R3 j xþ y 6 0 et z >¼ 0g, so 8u 2 ½��u;0� �
½��u; �u�; f ðrA;rB; s;uÞ 2 TKðrA;rB; sÞ.

3.3.2. On faces F3 and F4

We study the intersection between F and TK on F3 and F4. We remind that the dynamics has a symmetry property (Re-
mark. 2). Furthermore, the constraint set is symmetrical by the transformation:
Please
Appl.
ðrA;rB; sÞ ! ðrB;rA;1� sÞ:
Consequently the results for F4 will be deduced from the ones for F3.
If ðrA;rB; sÞ 2 F

�
3; TKðrA;rB; sÞ ¼ Rþ � R2.

And f1ðr;rB; sÞP 0() s P rra
B

ð1�r�rBÞð1�rBÞaþrra
B

:¼ s0ðr;rBÞ.

So, if s < s0ðr;rBÞ; TKðr;rB; sÞ \ Fðr;rB; sÞ ¼ ;.
So K is not a viability domain. Fig. 2 summarizes this study on the intersection between the contingent cones to the con-

straint set and the dynamics.

3.4. Sculpting the constraint set

On face F3;rA ¼ r, and when s ¼ s0ðr;rBÞ,
r0Aðr;rB; s0ðr;rBÞÞ ¼ f1ðr;rB; s0ðr;rBÞÞ ¼ 0. Then to go on analysing the possible constraint violation, we have to study

the sign of r00A.
cite this article in press as: C. Bernard, S. Martin, Building strategies to ensure language coexistence in presence of bilingualism,
Math. Comput. (2012), doi:10.1016/j.amc.2012.02.041

http://dx.doi.org/10.1016/j.amc.2012.02.041
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Please
Appl.
@2rA

@t2 ðrA;rB; sÞ ¼ df1ðrA;rB; sÞ:ðf1ðrA;rB; sÞ; f2ðrA;rB; sÞ;uÞ: ð17Þ
From Eq. (9), df1ðrA;rB; sÞ ¼ dðð1� rA � rBÞð1� rBÞas� rAra
Bð1� sÞÞ and
@f1

@rA
ðrA;rB; sÞ ¼ � ð1� rBÞasþ ð1� sÞra

B

� �
;

@f1

@rB
ðrA;rB; sÞ ¼ � ð1� rBÞasþ að1� sÞrAra�1

B þ að1� rA � rBÞð1� rBÞa�1s
� �

;

@f1

@s
ðrA;rB; sÞ ¼ ð1� rA � rBÞð1� rBÞa þ rAra

B:

ð18Þ
Then
@2rA

@t2 ¼ � ð1� rBÞasþ ð1� sÞra
B

� �
f1ðrA;rB; sÞ � ð1� rBÞasþ að1� sÞrAra�1

B þ að1� rA � rBÞð1� rBÞa�1s
� �

f2ðrA;rB; sÞ

þ ð1� rA � rBÞð1� rBÞa þ rAra
B

� �
u: ð19Þ
So @2rA
@t2 ðr;rB; s ¼ s0ðr;rBÞÞP 0, when:
� ð1� rBÞasþ að1� sÞrra�1
B þ að1� r� rBÞð1� rBÞa�1s

� �
f2ðr;rB; sÞ þ ð1� r� rBÞð1� rBÞa þ rra

B

� �
u P 0: ð20Þ
That is, since u multiplicative factor is strictly positive on F3 (rB P r > 0):
u P
ð1� rBÞasþ að1� r� rBÞð1� rBÞa�1sþ að1� sÞrra�1

B

ð1� r� rBÞð1� rBÞa þ rra
B

f2ðr;rB; sÞ ¼
@s0

@rB
ðr;rBÞf2ðr;rB; sÞ: ð21Þ
As u 2 U ¼ ½��u; �u�, a necessary and sufficient condition for the existence of a control such that @2rA
@t2 ðr;rB; s ¼ s0ðr;rBÞÞ is

greater or equal to 0 is that:
cðr;rBÞ :¼ @s0

@rB
ðr;rBÞf2ðr;rB; sÞ 6 �u: ð22Þ
Fig. 3 displays the plot of function c : rB ! cðr;rBÞ for different values of r 2�0; 0:3�.
We first note that cðr;rBÞ and f2ðr;rB; s0ðr;rBÞÞ have the same sign since @s0

@rB
ðr;rBÞP 0 (Eq. (22)).

And f2ðr;rB; s0ðr;rBÞÞ 6 0 when s0ðr;rBÞP s1ðr;rBÞ :¼ ð1�r�rBÞð1�rÞa

ð1�r�rBÞð1�rÞaþrBra.

Let �rðrÞ such that s0ðr; �rðrÞÞ ¼ s1ðr; �rðrÞÞ; �rðrÞ < 1� r and for all rB 2 ½�rðrÞ; 1� r�; f2ðr;rB; s0ðr;rBÞÞ 6 0 and
cðr;rBÞ 6 0.
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Moreover, let r̂ðr; �uÞ ¼minfrB 2 ½r; �r�j8r P rB cðr;rÞ 6 �ug. Necessarily, r̂ < �r < 1� r since �u > 0.
Three situations may occur depending on the values of r and �u as illustrated in Fig. 4.

� Case 1: r̂ ¼ r (Fig. 4(a))
� Case 2: r̂ > r and for all r 6 rB < r̂; cðr;rBÞ > �u (Fig. 4(b))
� Case 3: r̂ > r and there exists ~r such that r 6 ~r < r̂ and for all rBjr 6 rB 6 ~r; cðr;rBÞ 6 �u (Fig. 4(c))

Depending on case 1, 2 or 3, the building procedure of the viability domain is slightly different:

3.4.1. Case 1: r̂ ¼ r
Let Uðr; tÞ : ½r; 1� r� � ½0;þ1½! R3 such that
Please
Appl.
Uðr;0Þ ¼ ðr;r; s0ðr;rÞÞ;
@Uðr;tÞ
@t ¼ ð�f1ðUðr; tÞÞ;�f2ðUðr; tÞÞ;��uÞ:

(
ð23Þ
We are interested in the intersection between fUðr; tÞjðr; tÞ 2 ½r; 1� r� � ½0;þ1½g and the constraint set K.
We first note that 8r 2 ½r; 1� r�;Uðr; 0Þ 2 K. Then, 8r 2 ½r; 1� r�; 9T 2 ½0; 1=�u� such that Uðr; TÞ R K since

K � R� R� Rþ and the projection of Uðr; tÞ on the s-coordinate decreases from s0ðrÞ with constant speed ��u Eq. (23).
We denote TðrÞ ¼maxfTj8t 2 ½0; T�; Uðr; tÞ 2 Kg. 8r 2 ½r; 1� r�; TðrÞ 6 1=�u.

Lemma 1. TðrÞ ¼ 0 and Uðr; TðrÞÞ 2 F3 \ F4

Tð1� rÞ ¼ 0 and Uð1� r; Tð1� rÞÞ 2 F3 \ F2.
Proof. Uðr;0Þ ¼ ðr;r; s0ðr;rÞÞ 2 F3 \ F4 and
�f2ðUðr;0ÞÞ ¼ �f2ðr;r; s0ðr;rÞÞ ¼ �f1ðr;r;1� s0ðr;rÞÞ ðsymmetry propertyÞ
< �f1ðr;r; s0ðr;rÞÞðf1 increases with s and s0ðr;rÞ < 0:5 when r < 0:3Þ
< 0: ð24Þ
So TðrÞ ¼ 0 and Uðr; TðrÞÞ 2 F3 \ F4.
Uð1� r;0Þ ¼ ðr;1� r;1Þ 2 F3 \ F2 and �f1ðr;1� r;1Þ � f2ðr;1� r;1Þ > 0, so Tð1� rÞ ¼ 0 and

Uð1� r; Tð1� rÞÞ 2 F3 \ F2. h
Lemma 2. Let r0 2 ½r;1� r�. If fUðr0; tÞ j t 2 ½0; Tðr0Þ�g \ @K ¼ fUðr0;0Þg [ fUðr0; Tðr0ÞÞg, then r! Uðr; TðrÞÞ is continuous
at r0.
Proof. By the definition of Tðr0Þ and since U is continuous, there exists �� > 0 such that 8d such that
0 6 � < ��;Uðr0; Tðr0Þ þ �Þ R K.

Let dist be the Euclidean distance in R3.
Let d ¼ distðK;Uðr0; Tðr0Þ þ �ÞÞ > 0 (K is a closed subset of X).
As @/

@t ðr; tÞ is bounded on any compact subset of ½r;1� r� � ½0;þ1½; 9dr > 0 such that 8d j jdj 6 dr
jjUðr0 þ d; Tðr0Þ þ �Þ �Uðr0; Tðr0Þ þ �Þjj 6 d=2. Therefore, Uðr0 þ d; Tðr0Þ þ �Þ R K and Tðr0 þ dÞ 6 Tðr0Þ þ �.
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Fig. 4. Plot of cðr; :Þ for r ¼ 0:1. Three situations can occur depending on the value of �u.
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If r0 ¼ r or r0 ¼ 1� r; Tðr0Þ ¼ 0, and 80 < � < ��; 9dr > 0 such that jdj < dr implies Tðr0 þ dÞ 6 �. So T is continuous at
r0.

If r0 2�r; 1� r½; @U@t ðr0;0Þ ¼ 0 and @2U
@t2 ðr0;0Þ ¼ a > 0. So Tðr0Þ > 0. Moreover, since @2U

@t2 is continuous, 9~� > 0; 9~dr > 0 such

that 8d j jdj 6 ~dr;8� j 0 6 � 6 ~�; @
2U
@t2 ðr0 þ d; �Þ > a

2 and Uðr0 þ d; �Þ 2 IntðKÞ.
Let ~d ¼ mint2½~�;Tðr0Þ���distðK;Uðr0; tÞÞ; ~d > 0 with the assumption of the lemma fUðr0; tÞ j t 2 ½0; Tðr0Þ�g\

@K ¼ fUðr0;0Þg [ fUðr0; Tðr0ÞÞg. So 9 �dr > 0, such that 8t 2 ½~�; Tðr0Þ � ��;8d j jdj 6 �dr; jjUðr0 þ d; tÞ �Uðr0; tÞjj 6 ~d=2.
So, 8d j jdj 6 minð~dr; �drÞ; Tðr0 þ dÞP Tðr0Þ � �.
Finally, T is continuous at r0. As U is continuous on ½r; 1� r� � Rþ, so r! Uðr; TðrÞÞ is also continuous at r0. h

Fig. 5 displays the plot of TðrÞ for the pair r ¼ 0:2 and �u ¼ 0:32 belonging to case 1.
Fig. 5 also describes the face Uðr; TðrÞÞ belongs to:

� there exists r 6 r1, such that for all r 2 ½r; r1�;Uðr; TðrÞÞ 2 F4

� there exists r1 6 r2, such that for all r 2 ½r1;r2�;Uðr; TðrÞÞ 2 F0

� and for all r 2 ½r2; 1� r�;Uðr; TðrÞÞ 2 F2.

Corollary 1. r! Uðr; TðrÞÞ is continuous on ½r;1� r�

Proof. Suppose Uðr; TðrÞÞ is not continuous at r0.
From Lemma 2, limr!r�0 Uðr; TðrÞÞ (or limr!rþ0

Uðr; TðrÞÞ) equals Uðr0; T1Þ– Uðr0; Tðr0ÞÞ with Uðr0; T1Þ 2 @K and
T1 < Tðr0Þ.

So �f1ðUðr0; T1ÞÞ;�f2ðUðr0; T1ÞÞ;��uð Þ belongs to the contingent cone of K at Uðr0; T1Þ.
Consequently, Uðr0; T1Þ R F0 and Uðr0; T1Þ R F2 (see Section 3.3.1).
Moreover, Uðr0; T1Þ R F4 if (H1) �u > jminr2½r;1�r�cðr;rÞj.
Actually, if Uðr0; T1Þ 2 F4; f2ðUðr0Þ; T1Þ ¼ 0, and by the symmetry property, 9r such that Uðr0; T1Þ ¼ ðr;r;1� s0ðr;rÞÞ.

Moreover, let UrB be the projection of U on the rB-coordinate, @
2UrB

@t2 ðr0; T1ÞP 0 implies, using the symmetry property and
following the same development as Eqs. (20)–(22), that ��u P cðr;rÞ which contradicts the assumption (H1).

As maxr2½r;1�r�cðr;rÞ > jminr2½r;1�r�cðr;rÞj (Fig. 4(a)), assumption (H1) is satisfied in case 1. h

Fig. 6 displays a 3D plot of the intersection between K and the surface fUðr; tÞjðr; tÞ 2 ½r;1� r� � ½0; TðrÞ�g.
Fig. 5. r ¼ 0:2 and �u ¼ 0:32. Plot of the function T : ½r; 1� r� ! Rþ.
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3.4.2. Case 2: r̂ > r and (H2) for all r 6 rB < r̂; cðr;rBÞ > �u
Let Uðr; tÞ : ½r̂; 1� r� � ½0;þ1� ! R3 defined as in Eq. (23).
As in case 1, TðrÞ :¼maxfTj8t 2 ½0; T� Uðr; tÞ 2 Kg and 8r 2 ½r̂; 1� r�; TðrÞ 6 1=�u.

Lemma 3. Tðr̂Þ ¼ 0 and Uðr̂; Tðr̂ÞÞ 2 F
�

3

Tð1� rÞ ¼ 0 and Uð1� r; Tð1� rÞÞ 2 F3 \ F2.
Proof. By the definition of r̂; f1ðr; r̂; s0ðr; r̂ÞÞ ¼ 0.
Moreover, df1ðr; r̂; s0ðr; r̂ÞÞ:f ðr; r̂; s0ðr; r̂Þ; �uÞ ¼ 0.
And let hðrA;rB; sÞ :¼ df1ðrA;rB; sÞ:f rA;rB; s; �uð Þ,
Fig. 6.
area fU
F3; F4; F

Please
Appl.
dhðr; r̂; s0ðr; r̂ÞÞ 0;1;
@s0

@r
ðr; r̂Þ

� �
< 0:
Let UrA
be the rA-component of U;

@UrA
@t ðr̂;0Þ ¼ �f1ðr; r̂; s0ðr; r̂ÞÞ ¼ 0.

@2UrA

@t2 ðr̂;0Þ ¼ �df1ðr; r̂; s0ðr; r̂ÞÞ:f ðr; r̂; s0ðr; r̂Þ; �uÞ ¼ 0.
(a) The Euler approximation of fUðr; tÞjr 2 ½r;1� r� � ½0; TðrÞ�g for r ¼ 0:2 and �u ¼ 0:32. The area fUðr; tÞjUðr; TðrÞÞ 2 F4g is coloured black. The
ðr; tÞjUðr; TðrÞÞ 2 F0g is coloured light gray. The area fUðr; tÞjUðr; TðrÞÞ 2 F2g is coloured dark gray. (b)–(e), the intersection between Uðr; tÞ and
0 and F2.
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Fig. 7. r ¼ 0:1, �u ¼ 0:06 and r̂ � 0:73. Plot of the function T : ½r̂; 1� r� ! Rþ .
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Furthermore,
Please
Appl.
@3UrA
ðr̂;0Þ

@t3 ¼ dhðr; r̂; s0ðr; r̂ÞÞð�f1ðr; r̂; s0ðr; r̂ÞÞ;�f2ðr; r̂; s0ðr; r̂ÞÞ;��uÞ

¼ dhðr; r̂; s0ðr; r̂ÞÞð0;�f2ðr; r̂; s0ðr; r̂ÞÞ;��uÞ: ð25Þ
But, 0;�f2ðr; r̂; s0ðr; r̂ÞÞ;��uð Þ and 0;�1;� @s0
@r ðr; r̂Þ

� �
are collinear with the same direction since cðr; r̂Þ ¼ �u, so there exists

k > 0 such that:
dhðr; r̂; s0ðr; r̂ÞÞð0;�f2ðr; r̂; s0ðr; r̂ÞÞ;��uÞ ¼ kdhðr; r̂; s0ðr; r̂ÞÞ 0;�1;� @s0

@r
ðr; r̂Þ

� �
< 0: ð26Þ
So @3UrA ðr̂;0Þ
@t3 < 0; Tðr̂Þ ¼ 0 and Uðr̂; Tðr̂ÞÞ 2 F

�
3. h

Fig. 7 displays the plot of TðrÞ for the pair r ¼ 0:1 and �u ¼ 0:06 belonging to case 2.
We cannot represent on Fig. 7 the face Uðr; TðrÞÞ belongs to since some bounds are very close but:

� there exists r 6 r1, such that for all r 2 ½r; r1�;Uðr; TðrÞÞ 2 F3

� there exists r1 6 r2, such that for all r 2 ½r1;r2�;Uðr; TðrÞÞ 2 F4

� there exists r2 6 r3, such that for all r 2 ½r2;r3�;Uðr; TðrÞÞ 2 F0

� and for all r 2 ½r3; 1� r�;Uðr; TðrÞÞ 2 F2.

Moreover,

Corollary 2. If (H1) is satisfied, r! Uðr; TðrÞÞ is continuous on ½r̂;1� r�.
Proof. We use the same notations as corollary 1.
From Lemma 2 and Lemma 3, Uðr; TðrÞÞ is continuous at r̂ and 1� r.
From Corollary 1, if (H1) and if Uðr; TðrÞÞ is not continuous at r0;Uðr0; T1Þ R F0 [ F2 [ F4.
If Uðr0; T1Þ 2 F3, since Uðr0;0Þ 2 F3 and T1 > 0; 9T2 2�0; T1½ such that UrA ðr0; T2Þ > r; @UrA

@t ðr0; T2Þ ¼ 0 and
@2UrA

@t2 ðr0; T2Þ 6 0.
Hence, following the same development as Eqs. (20)–(22),
�u 6 cðUrA ðr0; T2Þ;UrBðr0; T2ÞÞ: ð27Þ
We recall that r̂ðrAÞ ¼minfrB 2 ½rA; 1� rA� j 8r P rB; cðrA;rÞ 6 �ug. Let ŝðrAÞ ¼ s0ðrA; r̂ðrAÞÞ. ŝ decreases with rA as illus-
trated in Fig. 3(b). So, ŝðUrA ðr0; T2ÞÞ 6 ŝðrÞ. Moreover, since Eq. (27), UrB ðr0; T2Þ 6 r̂ðUrA ðr0; T2ÞÞ and
Usðr0; T2Þ 6 ŝðUrA ðr0; T2ÞÞ since s0ðUrA ðr0; T2Þ; :Þ is increasing. Moreover, @Us

@t ¼ ��u, then Usðr0; T1Þ < ŝðrÞ.
Finally, UrB ðr0; T1Þ < r̂ since s0ðr; :Þ is increasing. And @2UrA

@t2 ðr0; T1ÞP 0, that is �u P cðUrA ðr0; T1Þ ¼ r;UrB ðr0; T1Þ < r̂Þ
which contradicts the assumption (H2). h

Fig. 8 displays a 3D plot of the intersection between K and the surface fUðr; tÞjðr; tÞ 2 ½r̂;1� r� � ½0; TðrÞ�g.

3.4.3. Case 3: r̂ > r and (H3) there exists ~r;r < ~r < r̂, such that 8rB 2 ½r; ~r�; cðr;rBÞ 6 �u
On the contrary to case 2, with the assumption (H3), there may exist rd 2�r̂; 1� r½ and re 2�r; ~r½ such that

Uðrd; T1Þ ¼ ðr;re; s0ðr;reÞÞ with 0 < T1 < TðrdÞ. The assumption of Lemma 2 is not satisfied at rd and TðrÞ and
Uðr; TðrÞÞ are not continuous at rd : limr!rd�Uðr; TðrÞÞ 2 F

�
3, but Uðrd; TðrdÞÞ 2 F4 [ F0.

To complete the surface, we then have to extend the definition domain of U : ½r;re½[½r̂; 1� r� � Rþ ! R3 as illustrated in
Fig. 9. Especially, Fig. 9(b) shows the intersection between Uðr; tÞ and F4 with the noticeable values rd and re.
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Fig. 8. (a) The Euler approximation of fUðr; tÞjr 2 ½r̂;1� r� � ½0; TðrÞ�g for r ¼ 0:1 and �u ¼ 0:06. The area fUðr; tÞjUðr; TðrÞÞ 2 F3g is coloured gray. The
area fUðr; tÞjUðr; TðrÞÞ 2 F4g is coloured black. The area fUðr; tÞjUðr; TðrÞÞ 2 F0g is coloured light gray. The area fUðr; tÞjUðr; TðrÞÞ 2 F2g is coloured dark
gray. (b)–(e), the intersection between Uðr; tÞ and F3; F4; F0 and F2.
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3.5. Defining the viability domain inside the constraint set

We denote
Please
Appl.
DN0 :¼ fUðr; tÞjr 2 ½r;re� [ ½r̂; 1� r�; t 2 ½0; TðrÞ�g: ð28Þ
We denote DN1 the symmetric of DN0 by the transformation ðrA;rB; sÞ ! ðrB;rA;1� sÞ.

Remark 3.
DN1 :¼ f�Uðr; tÞjr 2 ½r;re� [ ½r̂; 1� r�; t 2 ½0; TðrÞ�g; ð29Þ
where �Uðr; tÞ : ½r; re� [ ½r̂; 1� r� � ½0;þ1½! R3 such that
�Uðr;0Þ ¼ ðr;r;1� s0ðr;rÞÞ;
@ �Uðr;tÞ
@t ¼ ð�f1ð�Uðr; tÞÞ;�f2ð�Uðr; tÞÞ; �uÞ

(
ð30Þ
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Fig. 9. (a) The Euler approximation of fUðr; tÞjr 2 ½r; re½[½r̂;1� r� � ½0; TðrÞ�g for r ¼ 0:1 and �u ¼ 0:28. The area fUðr; tÞjr 2 ½r; re½g is coloured black. The
area fUðr; tÞjr 2 ½r̂; 1� r� Uðr; TðrÞÞ 2 F3g is coloured gray. The area fUðr; tÞjr 2 ½r̂; 1� r� Uðr; TðrÞÞ 2 F0g is coloured light gray. The area
fUðr; tÞjr 2 ½r̂; 1� r� Uðr; TðrÞÞ 2 F2g is coloured dark gray. (b) displays the intersection between Uðr; tÞ and F3.
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and TðrÞ ¼maxfTj8t 2 ½0; T�; �Uðr; tÞ 2 Kg.
DN0 separates K into two subsets. We define
4 We

Please
Appl.
D :¼ fx 2 Kj 9xð:Þ continuous : ½0;1� ! K; xð0Þ ¼ x; xð1Þ ¼ ðr;1� r;1Þ;
8t 2 ½0;1�; xðtÞ 2 K;

fxðtÞjt 2�0;1�g \ DN0 ¼ ;g:
ð31Þ
In the same manner, DN1 separates K into two subsets. We define
D :¼ fx 2 Kj 9xð:Þ continuous : ½0;1� ! K; xð0Þ ¼ x; xð1Þ ¼ ð1� r;r;0Þ;
8t 2 ½0;1�; xðtÞ 2 K;

fxðtÞt 2�0;1�g \ DN1 ¼ ;g:
ð32Þ
Let D � K defined by
D :¼ D \ D: ð33Þ
Fig. 10 displays different 3d-plots of such a subset D when r ¼ 0:1 and �u ¼ 0:06.

Theorem 2. D is a viability domain under F.
Proof. We denote DF0 :¼ D \ F0;DF1 :¼ D \ F1;DF2 :¼ D \ F2;DF3 :¼ D \ F3, and DF4 :¼ D \ F4. The boundary of D; @D equals:
@D ¼ DF0 [ DF1 [ DF2 [ DF3 [ DF4 [ DN0 [ DN1 :
– If ðrA;rB; sÞ 2 D
�

F0 ,4 TDðrA;rB; sÞ ¼ R2 � Rþ, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 ½0; �u�.
– If ðrA;rB; sÞ 2 D

�
F1 ; TDðrA;rB; sÞ ¼ R2 � R�, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 ½��u;0�.

– If ðrA;rB; sÞ 2 D
�

F2 ; TDðrA;rB; sÞ ¼ fðx; y; zÞjxþ y 6 0g, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 U.
– If ðrA;rB; sÞ 2 D

�
F3 ; TDðrA;rB; sÞ ¼ Rþ � R2, and f1ðrA;rB; sÞ > 0, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 U.
use the same notation as in Section 3.3, but henceforward, � represents the relative interior in @D.
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Fig. 10. Four different views of the 3D-viability domain for r ¼ 0:1 and �u ¼ 0:06.
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– We have the same, if ðrA;rB; sÞ 2 D
�

F4 ; f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 U.
– If ðrA;rB; sÞ 2 D

�
N0 , by construction, f1ðrA;rB; sÞ; f2ðrA;rB; sÞ; �uð Þ 2 TDðrA;rB; sÞ, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u ¼ �u.

– If ðrA;rB; sÞ 2 D
�

N1 , by construction, f1ðrA;rB; sÞ; f2ðrA;rB; sÞ;��uð Þ 2 TDðrA;rB; sÞ, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u ¼ ��u.

Moreover,

– If ðrA;rB; sÞ 2 DF0 \ DF2 and ðrA;rB; sÞ R DF4 [ DN0 ; TDðrA;rB; sÞ ¼ fðx; y; zÞjxþ y 6 0; z P 0g, so f ðrA;rB; s;uÞ 2
TDðrA;rB; sÞ for u 2 ½0; �u� since ðf1ðrA;rB; sÞ þ f2ðrA;rB; sÞÞ 6 0 when ðrA þ rBÞ ¼ 1.

– If ðrA;rB; sÞ 2 DF0 \ DF4 and ðrA;rB; sÞ R DF2 [ DN0 ; TDðrA;rB; sÞ ¼ R� Rþ
2, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 ½0; �u�.

– If ðrA;rB; sÞ 2 DF0 \ DN0 and ðrA;rB; sÞ R DF2 [ DF4 ; f ðrA;rB; s; �uÞ \ R2 � Rþ 2 TDðrA;rB; sÞ, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ
for u ¼ �u.

– If ðrA;rB; sÞ 2 DF3 \ DF4 and ðrA;rB; sÞ R DN0 [ DN1 TDðrA;rB; sÞ ¼ Rþ � Rþ � R, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 U
since f1ðrA;rB; sÞ > 0 and f2ðrA;rB; sÞ > 0.

– If ðrA;rB; sÞ 2 DF4 \ DN0 and ðrA;rB; sÞ R DF0 [ DF3 ; f ðrA;rB; s; �uÞ \ R� Rþ � R 2 TDðrA;rB; sÞ, so f ðrA;rB; s;uÞ 2 TD

ðrA;rB; sÞ for u ¼ �u.
– If ðrA;rB; sÞ 2 DF 2 \ DN0 and ðrA;rB; sÞ R DF0 [ DF3 ; f ðrA;rB; s; �uÞ \ fðx; y; zÞ 2 R3 j xþ y 6 0g 2 TDðrA;rB; sÞ, so f ðrA;rB;

s;uÞ 2 TDðrA;rB; sÞ for u ¼ �u.
– Moreover, if ðrA;rB; sÞ 2 DF0 \ DF2 \ DN0 ; f ðrA;rB; s; �uÞ \ R2 � Rþ \ fðx; y; zÞ 2 R3 j xþ y 6 0g � TDðrA;rB; sÞ, so f ðrA;rB;

s;uÞ 2 TDðrA;rB; sÞ for u ¼ �u. If ðrA;rB; sÞ 2 DF0 \ DF2 \ DF4 ; f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 ½0; �u�. If
ðrA;rB; sÞ 2 DF0 \ DF4 \ DN0 ; f ðrA;rB; s; �uÞ \ R� Rþ

2 � TDðrA;rB; sÞ, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u ¼ �u.
– If ðrA;rB; sÞ 2 DF3 \ DN0 ,
Pleas
Appl
– if rB 2�r;re� [ ½r̂;1� r½; f 1ðrA;rB; sÞ ¼ 0, so f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u 2 ½cðr;rBÞ; �u�
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– if rB 2�re; r̂½; f ðrA;rB; s;uÞ 2 TDðrA;rB; sÞ for u ¼ �u
– f ðr;r; s0ðr;rÞ;uÞ 2 TDðr;r; s0ðr;rÞÞ for u 2 ½cðr;rÞ; �u� since f2ðr;r; s0ðr;rÞÞ > 0
– and f ðr;1� r;1;uÞ 2 TDðr;1� r;1Þ for u 2 ½cðr;1� r;0�.

The proof of the non emptiness of the intersection between the contingent cone and the dynamics on the other points of the
boundary of D can be deduced from the problem symmetry by the transformation ðrA;rB; sÞ ! ðrB;rA;1� sÞ. h
Remark 4. We have proved that D is a viability domain. The model we work on satisfies the assumptions that guaranty the
existence of the viability kernel which is the biggest viability domain [12]. Once a viability domain is constructed, proving
that it is the viability kernel would require a further step to prove that the intersection between its boundary and the interior
of K is semi-permeable and then that all evolutions from any point of the complement of the viability domain in K leave K in
finite time.
4. Control strategy using the viability domain

4.1. The regulation map

D is a viability domain. Consequently, it allows to build a regulation map, RD, with non empty values on D. That means
that any x 2 D is viable. Moreover, there exists a viable evolution governed by the differential inclusion associated with the
regulation map (Theorem 1).

The regulation map is directly defined from the intersection between the dynamics and the contingent cone of D (Def. 4):
Please
Appl.
8x 2 D; RDðxÞ :¼ fu 2 UðxÞjf ðx; uÞ 2 TDðxÞg:
Let:

DN0 :¼ DN0 � fUðr;0Þjr 2 ½r;re½[½r̂; 1� r�g; ð34Þ
DN1 :¼ DN1 � f�U1ðr;0Þjr 2 ½r;re½[½r̂; 1� r�g: ð35Þ
From the proof of Theorem 2

– for x 2 DN0 ;RDðxÞ ¼ �u ; for x 2 DN1 ;RDðxÞ ¼ ��u
– for x 2 DF0 ; x R DN0 [ DN1 ;RDðxÞ ¼ ½0; �u�
– for x 2 DF1 ; x R DN0 [ DN1 ;RDðxÞ ¼ ½��u; 0�
– for ðr;rB; sÞ 2 DN0 � ðDN0 [ fðr;1� r;1ÞgÞ;RDðr;rB; sÞ ¼ ½cðr;rBÞ; �u�
– for ðrA;r; sÞ 2 DN1 � ðDN1 [ fð1� r;r;0ÞgÞ;RDðrA;r; sÞ ¼ ½��u;�cðr;rAÞ�
– RDðr;1� r;1Þ ¼ ½cðr;1� rÞ;0�
– RDð1� r;r;0Þ ¼ ½0;�cðr;1� rÞ�
– for x 2 D� ðDN0 [ DN1 [ DF0 [ DF1 Þ;RDðxÞ ¼ U.

4.2. Viable evolutions

From Theorem 1, any control function regulating a viable solution xð:Þ in D obeys the regulation law
for almost all t;uðtÞ 2 RDðxðtÞÞ: ð36Þ
That means that thanks to this regulation map, if the present situation lies in the viability domain, we can control the
system to remain in the constraint set, and therefore preserve coexistence of both monolingual groups.

At each time, there may be several controls that ensure viability. The next issue that arises is the choice of an effective
univocal control function.

4.3. Slow viable evolutions

From a political viewpoint, the strategy that minimises control strength at each time may be attractive since it reduces
the strength of the measures to carry out. We derive from the regulation map such a strategy below.

The existence of slow solutions is not obvious. A sufficient condition for a minimal norm selection or selection minimizing
other criteria to be a solution to the dynamical system, is the strict convexity assumption of the right hand side of the dif-
ferential inclusion x0 2 FðxÞ [14]. Unfortunately the dynamics we deal with does not exhibit such strict convexity assumption,
so we cannot use such a theorem.

In the following sections we will prove the existence of slow viable evolutions for our particular case using definition and
theorem from [11] reproduced in Appendix A.
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4.3.1. Minimal selection of the regulation map
We first consider the minimal selection, R	D, of the regulation map RD. Actually, the values of the regulation map RD are

closed and convex, so we can associate with x 2 D the viable control with minimal norm:
Please
Appl.
R	DðxÞ :¼ mðRDðxÞÞ :¼ fu 2 RDðxÞjjjujj ¼ min
y2RDðxÞ

jjyjjg: ð37Þ
R	D is then defined on D by:

– for x 2 DN0 ;R
	
DðxÞ ¼ �u ; for x 2 DN1 ;R

	
DðxÞ ¼ ��u

– for x 2 DF0 ; x R DN0 [ DN1 ;R
	
DðxÞ ¼ f0g

– for x 2 DF1 ; x R DN0 [ DN1 ;R
	
DðxÞ ¼ f0g

– for ðr;rB; sÞ 2 DN0 � ðDN0 [ fðr;1� r;1ÞgÞ;R	Dðr;rB; sÞ ¼ fmaxð0; cðr;rBÞÞg
– for ðrA;r; sÞ 2 DN1 � ðDN1 [ fð1� r;r;0ÞgÞ;R	DðrA;r; sÞ ¼ fminð�cðr;rAÞ;0Þg
– R	Dðr;1� r;1Þ ¼ f0g
– R	Dð1� r;r;0Þ ¼ f0g
– for x 2 D� ðDN0 [ DN1 [ DF 0 [ DF 1Þ;R	DðxÞ ¼ f0g.

Theorem 3. For any initial state x0 2 D, there exists a viable solution starting at x0 which is regulated by R	D in the sense that
for almost all t P 0;
uðtÞ 2 R	DðxðtÞÞ:

�
Proof. Let bRD the set-valued map defined by

– for x 2 DN0; bRDðxÞ ¼ ½0; �u�
– for x 2 DN1 ;

bRDðxÞ ¼ ½��u; 0�
– for x 2 DF 0; x R DN0 [ DN1; bRDðxÞ ¼ f0g
– for x 2 DF 1; x R DN0 [ DN1; bRDðxÞ ¼ f0g
– for ðr;rB; sÞ 2 DN0 � ðDN0 [ fðr;1� r;1ÞgÞ; bRDðr;rB; sÞ ¼ ½0; �u�
– for ðrA;r; sÞ 2 DN1 � ðDN1 [ fð1� r;r;0ÞgÞ; bRDðrA;r; sÞ ¼ ½��u; 0�
– bRDðr;1� r;1Þ ¼ ½0; �u�
– bRDð1� r;r;0Þ ¼ ½��u; 0�
– for x 2 D� ðDN0 [ DN1 [ DF 0 [ DF 1Þ; bRDðxÞ ¼ f0g.

bRD is a selection of F (Def. 5 in Appendix A) with convex values. So, from Theorem 4 [11] reproduced in Appendix A, for
any initial state x0 2 D, there exists a viable solution to control system (7) starting at x0 which is regulated by the selection
SðbRDÞ of the regulation map RD, in the sense that
for almost all t P 0;

uðtÞ 2 SðbRDÞðxðtÞÞ :¼ RDðxðtÞÞ \ bRDðxðtÞÞ:

(
ð38Þ
SðbRDÞðxÞ is defined by

– for x 2 DN0; SðbRDÞðxÞ ¼ �u ; for x 2 DN1; SðbRDÞðxÞ ¼ ��u
– for x 2 DF 0; x R DN0 [ DN1; SðbRDÞðxÞ ¼ f0g
– for x 2 DF 1; x R DN0 [ DN1; SðbRDÞðxÞ ¼ f0g
– for ðr;rB; sÞ 2 DN0 � ðDN0 [ fðr;1� r;1ÞgÞ; SðbRDÞðr;rB; sÞ ¼ ½maxðcðr;rBÞ;0Þ; �u�
– for ðrA;r; sÞ 2 DN1 � ðDN1 [ fð1� r;r;0ÞgÞ; SðbRDÞðrA;r; sÞ ¼ ½��u; minð�cðr;rAÞ;0Þ�
– SðbRDÞðr;1� r;1Þ ¼ f0g
– SðbRDÞð1� r;r;0Þ ¼ f0g
– for x 2 D� ðDN0 [ DN1 [ DF 0 [ DF 1Þ; SðbRDÞðxÞ ¼ f0g.

SðbRDÞ only differs from R	D for ðr;rB; sÞ 2 DN0 � ðDN0 [ fðr;1� r;1ÞgÞ and for the symmetric.

Assume that x0 ¼ ðr;rB; sÞ 2 DN0 � ðDN0 [ fðr;1� r;1ÞgÞ.
Let xð:Þ be a viable evolution starting at x0 and regulated by SðbRDÞ. Let uð:Þ the regulation function such that

uðtÞ 2 SðbRDÞðxðtÞÞ for almost all t.
If xðtÞ R DN0 � ðDN0 [ fðr;1� r;1ÞgÞ; SðbRDÞ ¼ R	D, so the question of the existence of minimal norm regulation only arises

for time intervals, for instance ½0; d�; d > 0, with xðtÞ ¼ ðrAðtÞ;rBðtÞ; sðtÞÞ 2 DN0 � ðDN0 [ fðr;1� r;1ÞgÞ. In such cases,
uðtÞ ¼ cðr;rBðtÞÞ 2 SðbRDÞðxðtÞÞ regulates the evolution for almost all t 2 ½0; d� and cðr;rBðtÞÞ 2 R	DðxðtÞÞ.

Consequently, for any initial state x0 2 D, there exists a viable solution to control system (7) starting at x0 which is
regulated by the minimal selection R	D. h
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Fig. 11. An example of slow viable evolution: the 3D-plot of its trajectory (a) and the evolution of the three variable values over time (b) (r ¼ 0:1 and
�u ¼ 0:06).
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4.4. The computation of a particular slow viable evolution

The slow viable evolution consists in choosing at each time the control with minimal norm. In the case of the language
competition model, the control is the variation speed of the relative prestige of both languages. Consequently, the slow via-
ble evolution exhibits constant relative prestige periods until viability is at stake. For instance, in the case of the slow viable
evolution starting with 10% of monolingual speakers of language A;40% of monolingual speakers of language B (and conse-
quently 50% of bilingual speakers), described in Fig. 11, the relative prestige remains constant between t ¼ 0 and
t ¼ 17:5; t ¼ 20:2 and t ¼ 47:0; t ¼ 56:3 and t ¼ 74:4, and t ¼ 84:1 and t ¼ 102:3. However, these constant relative prestige
periods are separated by prestige variation periods. Actually, a constant prestige evolution would lead to exit the viability
domain (Remark 1). The cumulative length of the variation prestige periods during this simulation represents 26% of the full
simulation length.

It is also worth noting that to ensure coexistence prestige variation politics have to be undertaken when the constant
prestige evolution reaches the boundary of the viability domain. That means that measures may have to be undertaken rel-
atively far from the constraint set boundary: for instance, at time t ¼ 47:0, measures to increase the relative prestige of lan-
guage B have to be undertaken to prevent language B community to go below the given threshold, but at that time, both
communities size are far this threshold: rA ¼ 41% and rB ¼ 37%. This illustrates the viability analysis as a tool of anticipa-
tion to take measures to prevent future viability loss.

5. Conclusion

Abrams and Strogatz [2] end their paper of the analysis of their model of language competition by the statement that
‘‘Contrary to the model’s stark prediction, bilingual societies do, in fact, exist [. . .]. The example of Quebec French demon-
strates that language decline can be slowed by strategies such as policy-making, education and advertising, in essence
increasing an endangered language’s status.’’ Following this way, we have considered the status, the prestige, as a variable
in a model of language competition taking explicitly into account the bilingual subpopulation. Crystal [1] describes the main
mechanisms that make the prestige vary. We do not go into this detail but assume that the variations of this prestige with
time are bounded (policy making as education take time).

We have then answered the question of determining a set of prestige variations that preserve both monolingual subpop-
ulations following a viability theory approach:

� we have defined in the state space the constraint set representing the preservation of both monolingual subpopulations
� this constraint set is not a viability domain, so we have built inside it a viability domain: from all states of a viability

domain there exists a control function which governs an evolution which remains in the viability domain. This domain
is a true set where both monolingual subpopulations can be preserved
� we have then proposed a selection of the regulation map that governs slow viable evolutions
� finally, we have illustrated this method from a given state, showing how a slow viable evolution made of constant control

periods separated by specified interventions allow to preserve both monolingual subpopulations, whereas constant policy
would lead to the extinction of one of them.
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Appendix A. Selection of viable solutions: a definition and a theorem from [11]

Definition 5 (Selection Procedure). Let Y a normed space. A selection procedure of a set-valued map F : X,Y is a set-valued

map SF : X,Y satisfying ðiÞ 8x 2 Dom ðFÞ; SðFðxÞÞ :¼ SFðxÞ \ FðxÞ – ;
ðiiÞ the graph of SF is closed

�
The set-valued map SðFÞ : x,SðFðxÞÞ is called the selection of F.
Theorem 4. Let us consider a Marchaud control system ðU; f Þ and suppose that K is a viability domain. Let SRK be a selection of the
regulation map RK . Suppose that the values of SRK are convex. Then, for any initial state x0 2 K, there exists a viable solution starting
at x0 and a viable control to control system ðU; f Þ which are regulated by the selection SðRKÞ of the regulation map RK , in the sense

that
for almost all t P 0;
uðtÞ 2 SðRKÞðxðtÞÞ :¼ RKðxðtÞÞ \ SRK ðxðtÞÞ

�
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