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Abstract

Invasive alien species are a growing threat for the environment and health. They also have a major economic impact, as they can
damage many infrastructures. The Japanese knotweed (Fallopia japonica), present in North America, Northern and Central Europe
as well as in Australia and New Zealand, is listed by the World Conservation Union as one of the world’s worst invasive species.
So far, most models have dealt with the knotweed invasion without management. This paper aims to provide a model able to study
and predict the dynamics of a stand of Japanese knotweed taking into account mowing as a management technique. The model
is stochastic and individual-based, which allows us to take into account the behaviour of individuals depending on their size and
location, as well as individual stochasticity. We set plant dynamics parameters based on a calibration with field data and studied the
influence of the initial population size, the mean number of mowing events a year and the management project duration on the mean
area and mean number of crowns. The results provide the sets of parameters for which it is possible to obtain stand eradication, and
the minimum duration of the management project necessary to achieve this.

Keywords: Invasive plant, Fallopia spp., Reynoutria spp., Polygonum spp., individual-based model, management strategies,
dynamics, model exploration

1. Introduction

Invasive alien species are a growing problem for the envi-
ronment and human health. They may cause a loss of biodi-
versity (Murphy and Romanuk, 2014), changes in ecosystem
functioning (Strayer, 2012) or affect human well-being (Shack-
leton et al., 2019). They also have a major economic impact
(Kettunen et al., 2009; Pimentel et al., 2005). The need to act
against invasive species is based on their global and local im-
pacts as well as international policy engagements. For example,
since 1992, the Convention on Biological Diversity (article 84)
compels the parties to "prevent the introduction of, control or
eradicate those alien species which threaten ecosystems, habi-
tats or species". Managing invasive species is a global and lo-
cal challenge and management strategies depend on species, the
stage of the invasion process and the scale of action (Simberloff

et al., 2013; Hui and Richardson, 2017).
Many studies focus on optimal management of invasive

species (Baker and Bode, 2016; Harris et al., 2009; Travis et al.,
2011). A frequent question in the literature of invasive species
management through mathematical modelling is to assess the
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benefit of a spatial prioritization of management activities. For
example, for seed dispersal species, is it more profitable to re-
move the individuals at the heart of the invasion or those on
the periphery (Harris et al., 2009)? Another issue discussed in
the literature of invasive species management is the temporal
distribution of actions. For example, we know that early detec-
tion and a rapid response to the invasion may be more efficient
(Pyšek and Richardson, 2010). As such, questions related to de-
tectability strategies may help to optimize containment actions
and early eradication of newly arrived individuals (Cacho et al.,
2007, 2010). However, management programs frequently start
when the species is already well established. In that situation,
what is needed in terms of time and cost to achieve eradica-
tion? Panetta et al. (2011) developed a model to study the fea-
sibility of eradicating the invasive species studied. Cacho et al.
(2007) and Hester et al. (2010) also addressed this question,
integrating management costs (administration, search, control
and travel) and proposed a population model for the growth of
invasive species. Moreover, when the eradication is no longer
attainable, management objectives may then switch to contain-
ment of the invasive species. For a given landscape Bonneau
et al. (2019) proposed an optimal search and destroy strategy
which takes into account visit cost, removal cost and presence
probability. When dynamics are considered, crucial questions
would then concern the trade-off between intensity and length
of the control strategy to maintain the invasion under a desir-
able threshold. For instance, is it better to act significantly at
the beginning of the management project and then to control
the invasion with a lower investment (as in Meier et al. (2014)),
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or to have a longer management project that requires a less in-
tense effort? This trade-off between intensity and length of the
control strategy is the crucial question we address in this article
in the case of the Japanese knotweed.

Actually, among the worst invasive species threatening bio-
diversity, Asian knotweeds raise particular management issues.
This complex of three species (the Japanese knotweed, Fallopia
japonica [Houtt.] Ronse Decraene, the giant knotweed, Fal-
lopia sachalinensis [Schmidt Petrop.] Ronse Decraene and the
hybrid between these two plants, the Bohemian knotweed (Fal-
lopia × bohemica Chrtek & Chrtkova) have invaded Europe and
North America. Native to Eastern Asia, knotweeds were intro-
duced for ornamental purposes at the end of the 19th century
(Bailey and Wisskirchen, 2006; Barney et al., 2006; Beerling
et al., 1994). They are also present in Australia, New Zealand
and Chile (Alberternst and Böhmer, 2006; Saldaña et al., 2009).

Asian knotweeds quickly invade the environment in which
they grow (Gowton et al., 2016) and have large impacts (Lavoie,
2017). They displace other plant species through light compe-
tition and allelopathy (Dommanget et al., 2014; Siemens and
Blossey, 2007), affect native fauna diversity (Abgrall et al.,
2018; Gerber et al., 2008; Maerz et al., 2005; Serniak et al.,
2017) and modify ecosystem functioning (Dassonville et al.,
2011; Tharayil et al., 2013). In addition, the control costs are
very high, estimated at U.S.$ 250 million a year in Great Britain
(Colleran and Goodall, 2014) and more than 2 billion euros a
year in Europe (Kettunen et al., 2009).

Asian knotweeds grow in a wide variety of soils: sandy,
swampy and rocky. They mainly invade human-modified habi-
tats such as roadsides, waste dumps, but also river banks. They
are perennial geophytes: their rhizomes allow them to spend
the winter season buried in the ground (De Waal, 2001). Their
rhizomes also play a major role in their propagation, thanks to
their strong regeneration capacity (Bailey et al., 2009; Brock
et al., 1992). Once arrived in a new area, the rhizome expands
centrifugally and a new stand can sustainably establish in a few
weeks (Gowton et al., 2016; Smith et al., 2007).

Once established and due to their extensive rhizome network,
Asian knotweeds are extremely hard to remove. Rhizomes ac-
count for two-thirds of their biomass (Barney et al., 2006) and
can expand several metres away from the visible invasion front
(Barney et al., 2006). The resources they store can be efficiently
remobilized after mowing events (Rouifed et al., 2011). Some
authors estimate that six cuttings are needed to significantly re-
duce belowground biomass (Gerber et al., 2010). Understand-
ing the underground development of Asian knotweeds is there-
fore crucial to gain insight into their local propagation and per-
formance. Moreover, it could help if more efficient manage-
ment were designed.

Since underground organs are almost inaccessible to ob-
servers, direct observations are scarce and models could help
to approach their dynamics and provide a better understanding
of how management actions can affect their development. To
our knowledge, there are very few models in the literature that
describe the growth of a Japanese knotweed stand, and among
them, rare are those that include a management technique.

In Smith et al. (2007), the authors built a 3D correlated ran-

dom walk model of the development of the subterranean rhi-
zome network for a single stand of Japanese knotweed. Their
model was based on knowledge of the morphology and physi-
ology of the plant. They studied the model through simulations
and they observed a quadratic expansion of the area invaded.

Dauer and Jongejans (2013) proposed an "Integral Projection
Model", inspired from matrix population models, for the plant
dynamics at the stand level. The variable of interest was a con-
tinuous variable which stands for the height or the total biomass
of the plant, and the authors used a simplified plant life cycle to
model the transition between states, such as the transition from
new shoots to crown (a crown is the location of a terminal bud
from which stems emerge). They studied the parameters that
have the largest effect on the growth rate of the population.

Gourley et al. (2016) developed a mathematical model for
biocontrol of Fallopia japonica using one of its co-evolved nat-
ural enemies, the Japanese sap-sucking psyllid Aphalara ita-
dori. It is a deterministic model that describes the dynamics of
the number of insects (larvae and adults), the total weight of the
knotweed stems and the rhizome biomass. Two key parameters
of their model are the time it takes a larva to consume and di-
gest the sap from the plant stems, and the duration of the larval
stage (Landi et al., 2018).

A commonly used management technique for Asian
knotweed stands is mowing. Managers can vary the intensity
and frequency, which motivates a study of the effects of these
two parameters on the stand dynamics. This paper aims at ex-
amining the influence of mowing on the growth of an Asian
knotweed stand. More precisely, we studied the influence of
the initial population size, the mean number of mowing events
a year and the management project duration on the mean area
and number of crowns of the stands. To our knowledge, exist-
ing models have not been designed to study such questions. We
adopt a stochastic formalism enabling us to study the early stage
of invasion when the mean field approximation is not valid. In-
deed mean field approximation requires the presence of many
individuals and thus the species to be present for a long time.
The description of phenomena at the individual level enabled us
to take into account the variability between crowns, for example
due to different ages.

The paper is organized as follows. Section 2 is devoted to the
description of the ecological mechanisms under consideration
(apical dominance, intraspecific competition, etc.), the presen-
tation of the mathematical model, as well as the methods. The
results are presented in Section 3. In particular, we calibrated
the plant dynamics with field data collected in the French Alps.
Numerical simulations were carried out with OpenMOLE soft-
ware (Reuillon et al., 2013) to study the influence of manage-
ment parameters on the population growth. Finally, we summa-
rize our results and discuss their implications and shortcomings
in Section 4.

2. Materials and methods

In this section we provide a description of the dynamical
model for the growth of a stand of Japanese knotweed includ-
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ing mowing as a management technique. We also describe the
methods used to study this through numerical simulations.

In the following, the term "individual" will refer to crowns.
We recall that a crown is the location of a terminal bud from
which stems emerge. Individuals are characterized by their
position x in the plane and their underground biomass a (i.e.
the biomass rhizome connected to the crown, referred to as
biomass).

The following notations will be used to describe our model:

• χ := R2×R+, is the state space of positions and biomasses.
In the model, a crown is represented by a Dirac mass δ(x,a),
with (x, a) ∈ χ, where x stands for the position of the
crown and a is the biomass associated with the crown.

• The set of crowns present at time t is described by the mea-
sure Zt ∈ M(χ), whereM(χ) is the set of finite point mea-
sures on χ whose masses of points are 0 or 1.

M(χ) :=

 n∑
i=1

δ(xi,ai) , n ≥ 0, (x1, a1), . . . , (xn, an) ∈ χ

 .
UsingM(χ) allows us not to set a priori the number of indi-

viduals in the model, since it contains all the possible popula-
tion sizes.

2.1. Description of the phenomena included in the model

Birth: An individual with trait (x, a) ∈ χ (i.e. its position
is x and it has a biomass a) gives birth at rate b(x,Z), where
Z ∈ M(χ) describes the state of the population (i.e. the posi-
tions and biomasses of all individuals). We assume that this
birth rate does not depend on an individual’s biomass a. A
crown can give birth to at most two daughter crowns (Smith
et al., 2007) at a rate depending on the neighbouring individu-
als present at a distance less than distanceParent. Hence, if
a crown has already given birth to two daughters (in fact if
there are already three individuals at a distance shorter than
distanceParent from it since we count its parent), it has a null
birth rate (it no longer gives birth). We will see in the next
section that a daughter crown can in principle be at a distance
greater than distanceParent from its parent. This phenomenon
may be balanced by the fact that crowns from another parent
can be at a distance less than distanceParent. These function-
ing rules allow us to account for the effects of apical dominance:
if a crown dies, the apical dominance it exerts on the neighbour-
ing lateral buds ceases, and they may develop to form aerial
shoots and create a new crown.

Bashtanova et al. (2009), Adachi et al. (1996) and Dauer
and Jongejans (2013) mention this phenomenon of apical dom-
inance in a general way, but they do not quantify it. That is why
we will use a calibration method to set its value (in fact we use
this method for all parameters, see Section 2.4).

The rate at which an individual with position x gives birth
can thus be expressed as follows:

b(x,Z) = b̄{∑y∈V(Z) 1{||x−y||≤distanceParent} ≤3}, (1)

where ||.|| denotes the usual norm on R2, b is the maximum birth
rate (under ideal conditions) and

V(Z) := {x ∈ R2,Z({x} × R+) > 0} (2)

is the set of the positions of the crowns present in the population
Z.

Dispersal of the newborn individual: An individual with trait
(x, a) which gives birth generates an individual at position x′.
Here we choose a Gamma law for the birth distance distribu-
tion. Its density on R+ is given by

x 7→ 1/(scaleshapeΓ(shape))x(shape−1)e−(x/scale). (3)

The parameters (shape, scale) of the distribution will be sub-
ject to calibration. We assume a uniform distribution on x′ − x
direction angle to the x-axis.

Moreover, we will model the phenomenon of intra-specific
competition by considering that an individual is really born only
if it does not fall too close to an already existing crown. So we
introduce the set C depending on the population state Z and the
position of the potential parent x:

Cx,Z := {z ∈ R2, ∀y ∈ V(Z)\{x}, ||y−z|| > distanceCompetition}.
(4)

The newborn individual must therefore be at a distance
greater than distanceCompetition from its neighbours not to
fall in the zone of intra-specific competition. This principle of
excluded zones (for the birth of an individual) is also used in
Smith et al. (2007): the areas around the crowns are subject to
competition for light and the emergence of new crowns is not
allowed.

The diagram in Figure 1 shows distances playing a role dur-
ing a birth event.

Figure 1: Diagram representing a birth event. A cross stands for a crown posi-
tion. We also indicate the different distances used in the model.
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Biomass dynamics: In Seiger et al. (1997), the authors present
the effects of mowing on rhizome growth. They find that rhi-
zome biomass increases significantly throughout the growing
season, unlike above-ground biomass, which stops growing sig-
nificantly at the end of the summer. If the aerial shoots are not
cut, the growth of the underground biomass a is assumed to
evolve according to a Von Bertalanffy’s law (Paine et al., 2012),
presented below (Equation (6)). How mowing aerial shoots im-
pacts the rhizome development is poorly known. We assume
that mowing results in a decrease of underground biomass. This
assumption stems from the use of rhizome resources for aerial
shoot regeneration (see Gerber et al. (2010)). In Rouifed et al.
(2011), the authors also note that mowing impacts the amount
of underground biomass at the end of the season, and induces a
decreasing rhizome density with depth (whereas without mow-
ing it is constant). However, we do not take this phenomenon
into account, since the model is planar.

Mowing events occur at a rate 1/τ (there is thus on average
τ mowing events a year), and a proportion proportionMowing
(constant) of individuals is mown.

After a mowing event, it is assumed that the underground
biomass a of an individual is immediately impacted and be-
comes a ∗F(a), where F takes values in [0, 1] and describes the
mowing effect as a function of the individual biomass. In order
to take into account the fragility of young crowns, the function
F describing the impact of mowing on biomass is assumed to
be higher for low biomasses (we therefore take F increasing,
which implies that for two biomasses a1 < a2, we will have
a1 ∗ F(a1) < a2 ∗ F(a2)). We assume that F is expressed as:

∀a ∈ R+, F(a) = 1 − exp(−mowingParameter ∗ a), (5)

where mowingParameter is a parameter that acts on the decay
rate of the exponential function.

For the biomass growth of a crown when there is no mow-
ing, we use Von Bertalanffy’s Equation (6). First described in
von Bertalanffy (1934), this equation has been widely used in
forestry (Zeide, 1993). Here, it describes the dynamics of the
biomass as a function of time. It is based on simple physiolog-
ical arguments: the growth rate of the organism decreases with
biomass.

da(t)
dt

= L(K − a(t)) =: v(a(t)), (6)

where L is the growth rate at low biomass and K is the max-
imum asymptotic biomass. If we assume that the biomass at
time t0 is equal to a0, then for all t ≥ t0, we obtain:

a(t) = a0e−L(t−t0) + K(1 − e−L(t−t0)). (7)

Moreover, we assume that all crowns are born with the same
biomass a0 ∈ R+.

Mortality: We assume that the mortality rate is independent of
the individual position. An individual alive at time t and with
biomass a(t) dies at a rate m(a(t)). We assume that the mortality
m is a decreasing function of the biomass: an individual with a

low biomass, either because it was just born or because it has
been mown, has a higher mortality rate. So if T0 is the time at
which an individual born at time 0 dies, and whose biomass up
to time t is given by the function a (we assume it is not mown),
we obtain:

P(T0 ≥ t) = e−
∫ t

0 m(a(s)) ds. (8)

In Smith et al. (2007), the authors set the probability that a
segment of rhizome dies over a 4-month period (a time step in
their model) to 0.0083. When there is no mowing, mortality
events for crowns rarely occur in nature, explaining why the
value proposed in Smith et al. (2007) is low. Having a good
estimate for this value requires a sufficiently large number of
observations; thus calibration is very useful to estimate a value
for this type of parameter. We assume that m, the function that
describes the mortality rate of a crown according to its biomass,
is expressed as:

m(a) = deathParameterS caling e−deathParameterDecrease∗a. (9)

Equation (9) involves two parameters:
deathParameterDecrease, which influences the decay
rate of the function and deathParameterScaling which allows
one to choose the mortality rate for individuals with low
biomass.

Mowing: We consider two possibilities for choosing the
crowns to be mown. The first one consists in choosing the
mown crowns uniformly at random (random management tech-
nique). The proportion can thus represent different qualities of
mowing if the aim is to mow the whole stand depending on the
tools used (by hand, brush cutter). We consider this technique
when we write the mathematical formalism of the model in Sec-
tion 2.2 and for the analysis of the influence of the model’s pa-
rameters in section 3.2. The second one is mowing one side of
the stand: it consists in determining an abscissa at the right of
which every crown is mown, and at the left of which no crown
is mown (side management technique). It reflects for example
the case of a stand located on two plots, owned by different per-
sons, one who manages the stand, whereas the other does not.
This situation occurs frequently along roadsides. We use this
management technique in the model for the calibration due to
the characteristics of our data set.

We summarize the model parameters in Appendix A. There
are two types: management parameters and plant dynamics pa-
rameters.

2.2. Mathematical formalism associated with the model
The class of stochastic individual-based models we are ex-

tending in this work was introduced by Bolker and Pacala
(1997), and by Dieckmann et al. (2000). A rigorous probabilis-
tic description and study was then conducted by Fournier and
Méléard (2004). Since then, these models have been widely
studied and extended (for instance in Champagnat (2006);
Champagnat et al. (2006); Costa et al. (2016); Coron et al.
(2018)).
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The model proposed here and its mathematical study are
drawn from the work of Tran (2006, 2008). In particular, the
notations and techniques were derived from these papers.

The stochastic differential equation (10)

Zt =
∑N0

i=1 δ(Xi(Z0),Ab(t,0,Ai(Z0))

+
∫

[0,t]×N∗×R+×R2 1{i≤Ns−}δ(Xi(Zs)+z,Ab(t,s,a0))1{θ≤b(Xi(Zs),Zs)}

1{Xi(Zs)+z ∈ CXi (Zs ),Zs }
M1(ds, di, dθ, dz)

+
∫

[0,t]×[0,1]N∗
∑Ns−

i=1 1{yi≤proportionMowing} (δ(Xi(Zs),Ab(t,s,Ai(Zs− )∗F(Ai(Zs− ))))

−δ(Xi(Zs),Ab(t,s,Ai(Zs))))M2(ds, dy)
−
∫

[0,t]×N∗×R+
1{i≤Ns−}1{θ≤m(Ai(Zs))}δ(Xi(Zs),Ab(t,s,Ai(Zs)) M3(ds, di, dθ)

(10)

describes the plant population dynamics. It is governed by three
independent Poisson random measures, defined as follows:

• M1(ds, di, dθ, dz) is a Poisson random measure on R+ ×

N∗ ×R+ ×R2 with intensity ds⊗n(di)⊗dθ⊗D(dz), where
n(di) stands for the counting measure on N∗ and D is the
density of the law for the dispersal of a child. The measure
M1 describes the birth events.

• M2(ds, dy) is a Poisson random measure on R+ × [0, 1]N
∗

with intensity 1/τ ds ⊗UN∗ ([0, 1]), whereU([0, 1]) is the
uniform law on [0, 1]. We denote y = (y1, y2, . . .) for y ∈
[0, 1]N

∗

. The measure M2 describes the mowing events.

• M3(ds, di, dθ) is a Poisson random measure on R+ × N∗ ×
R+ with intensity ds ⊗ n(di) ⊗ dθ, where n(di) stands for
the counting measure on N∗. The measure M3 describes
the death events.

In Equation (10),

Zt =

Nt∑
i=1

δ(Xi(Zt),Ai(Zt))

is thus the measure that describes the population at time t ≥ 0,
Ab is the flow of the differential equation describing the dy-
namics of the biomass of a crown (Equation (7)). Xi (resp.
Ai) denotes the position (resp. biomass) of the i-th individ-
ual in the population (in lexicographical order). Let functions
b : (x,Z) ∈ R2 ×M(χ) 7→ b(x,Z) and m : a ∈ R+ 7→ m(a) be,
respectively, individual birth and death rates. The application

C : Z ∈ M(χ) 7→ CXi(Z),Z ∈ P(R2),

where P(R2) is the set of all subsets of R2, gives the admis-
sible region for the births of new individuals, which is related
to intra-specific competition. The function F : [0,K] → [0, 1]
models the effect of mowing crowns and τ is the average num-
ber of mowing events a year.

The first term in Equation (10) refers to the growth of the
initial population: the individual biomasses increase accord-
ing to the flow Ab. The second term refers to birth events. A
birth event consists in choosing a potential parent and checking
whether it satisfies the conditions to give birth: this is the role
of the indicator functions. If it occurs, we add a Dirac mass

corresponding to a new individual in the population with ini-
tial biomass a0. The middle integral term refers to the mowing
event after which an individual is replaced by another individ-
ual with the same position and a reduced biomass. The last term
refers to death events, for which we delete an individual in the
population subtracting a Dirac mass.

Under boundary conditions over the birth and death rates (re-
call that b̄ is the upper bound of b), we have the following result
obtained in a similar way as in (Tran, 2006), Propositions 2.2.5
and 2.2.6: if Z0 ∈ M(χ), the stochastic differential equation ad-
mits a unique pathwise strong solution (Zt)t∈R+

∈ D(R+,M(χ))
such that for all T > 0, the number of individuals at time
t ≤ T,Nt := 〈Zt, 1〉 =

∫
R2×R Zt(dx, da) satisfies:

E[ sup
t∈[0,T ]

Nt] < E[N0]eb̄T < ∞.

This gives an upper bound to the growth of the population
when there is no management.

2.3. Simulation of the model

The algorithm used to simulate a solution of the stochastic
differential equation (10) is presented in Appendix B. To il-
lustrate the dynamics of the stand under our model, we use
Scala software (version 2.11.12). We use OpenMOLE software
(Reuillon et al. (2013), version 8.0) to perform the model ex-
ploration. Finally, we use R software (version 3.4.4) for the sta-
tistical analysis of model outputs. Simulations were performed
on the European Grid Infrastructure (http://www.egi.eu/).

Figure 2 displays an illustrative example of the population
size dynamics (number of crowns) of one trajectory of the
model, for given parameters of the plant dynamics and manage-
ment parameters. The initial population size was set to 1000,
the mean number of mowing events a year τ = 3, the manage-
ment project duration T = 4 years and the proportion of mown
crowns proportionMowing = 0.9. We thus have a mean num-
ber of mowing events equal to 3 ∗ 4 = 12 (there were 11 in the
simulation). The final population size is equal to 619, so the
management strategy leads to a reduction of roughly one-third
in population size.

2.4. Calibration data

Our goal is to find the influence of management parameters
on the stand dynamics. We must therefore set the parameters of
the plant dynamics. For some of the parameters, we could not
find values in the literature. We therefore proceed to a calibra-
tion to find parameter values with which the model best repro-
duces the field data.

The field data are those used by Martin et al. (2018). The
authors studied the invasion potential of the Japanese knotweed
along an elevational gradient (i.e. in mountains), by identifying
the determinants of its spatial dynamics. The experiment con-
sists in collecting data on 19 stands of Japanese knotweed at
different altitudes in the French Alps. The measurements were
taken in 2008 and 2015, on the stands themselves (outline, stem
density) as well as on biotic and abiotic variables. Stands were
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Figure 2: Illustrative example: simulation of one trajectory of the model (Equa-
tion (10)) with τ = 3, initialPopS ize = 1000, T = 4 and proportionMowing =

0.9 with plant dynamics parameters from Table 1. The black line shows the
population size, red lines indicate mowing event dates.

mown or not, and for each stand, we have access to informa-
tion on the management technique used by the land owner: the
frequency of mowing and an estimation of the proportion of the
mown stand, which corresponds to the side management tech-
nique. There is a high variability in the stands observed, both
in size (from less than 2 m2 to 350 m2) and land conditions in
which they grow such as soil quality, proximity of river, road,
forest and abandoned land.

In model outputs, we compute the final and initial population
sizes and areas (the area of the stand is the area of the convex
hull formed around the simulated stands). From Martin et al.
(2018), we use data on stand areas and crown densities so we
can deduce the population size, for stands in 2008 and 2015.

As mentioned in Appendix B, the simulation operation for a
stand takes place in two stages: first, the creation of the initial
population given a population size to reach (we chose the size
of a stand in 2008), then its dynamics, according to the infor-
mation related to management techniques contained in the data
from Martin et al. (2018).

2.5. Calibration method

For every set of parameters that we explored, we simulated
the 19 stands: the areas and sizes of the initial and final popu-
lations. We can therefore compare these values with the 19 ∗ 4
corresponding observations reported by Martin et al. (2018).
We aimed to find a set of parameters for the plant, common to
all stands, that best matches the model outputs (area and size)
to field observations. Note that this compares the initial sizes of
the 2008 observations and the simulated sizes. This compari-
son is mainly used to check if the set of parameters being tested
makes it possible to obtain an initial population. Indeed, some
sets of parameters can lead to a failure in the creation of popu-
lations (e.g. if the distance of competition is too great, whereas
the dispersal distance is too short).

We therefore need a distance to compare the simulations and
the observations. For each stand and each type (area or size),
the distance: dist(simu, data) = |simu−data|/data was chosen.
We use a relative error distance (renormalization by the data)

because areas and sizes do not have the same order of magni-
tude, and there is also a substantial difference within size values
and area values. The total distance to minimize is the sum of
the distances over the 19 stands and over the four observations
(size and area, in 2008 and 2015). Note that if the set of param-
eters does not allow for the creation of an initial population, a
population of size zero and a null area at the initial time (2008)
are obtained, and the simulated values for 2015 are also null.
The distance between the observations and a trivial (null) pop-
ulation is equal to 76 = (19 ∗ 4).

To minimize this distance, the OpenMOLE software pro-
poses a method based on genetic algorithms for model cali-
bration (NSGA2). The result obtained is presented in Section
3.1. The calibration algorithm is an iterative algorithm, which
provides a set of solutions at each step. As steps go by, the
distance dist(simu, data) between the data and the simulation
results for the selected solutions decreases.

2.6. Numerical analysis

Simulations are performed with the set of parameters ob-
tained by calibration (Section 3.1, Table 1).

Let us now explain how we studied the influence of the man-
agement parameters τ and T and of the initial population size,
where we recall that:

• τ is the mean number of mowing events a year,

• T is the duration of the project.

We focus on the influence of these three parameters and we
do not study the influence of the proportionMowing parameter.
Its value is set at 0.9 and the random management technique is
used. Indeed, we consider that the manager aims at mowing the
whole stand, but we do not use a value of proportionMowing
equal to 1 in order to consider an imperfect mowing event due
to the tool used (as mentioned in Section 2.1).

Samplings of management parameters are performed in
OpenMOLE, with a replication of size n = 50 for each set of
management parameters (these samplings are detailed in Sec-
tion 3.2) and the mean quantities are calculated over these n
values. We first let one parameter vary. Based on an initial vi-
sual inspection of simulation results, we fit three relationships
via least squares: a linear regression performed with R function
lm, a truncated quadratic relationship (Equation (12)), and an
exponential regression (Equation (11)) performed with R func-
tion nls. We assess model performance using the coefficient of
determination (R2) and the root mean squared errors (RMSE).
Finally, in Section 3.2.4, we use the same statistical tools (lm
and nls) to derive general regression formulas for the mean out-
put quantities depending on management parameters, and two
constants that the algorithm aims to find.

3. Results

3.1. Calibration

The values of calibrated parameters are presented in Table 1.
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The set of solutions provided by the NSGA2 algorithm sta-
bilized after 165000 steps. For a set of parameters, evol.sample
refers to the number of replications that were carried out by the
algorithm. Since the model is stochastic, we need to choose a
solution with a sufficiently large value for evol.sample to obtain
a reliable solution. Among the set of solutions provided by the
algorithm, we chose the solution that was replicated at least 50
times, and that minimizes the distance dist(simu, data).

Variable Value after calibration unit
K 12.72 g
L 0.26 year−1

distanceCompetition 0.15 m
distanceParent 0.20 m
shape 4.34
scale 2.36
deathParameterDecrease 2.32 g−1

deathParameterScaling 1.12 year−1

mowingParameter 0.11 g−1

bbar 0.18 year−1

a0 1.73 g
score 26.06
evol.sample 79

Table 1: Result of the calibration obtained with OpenMole software (Reuillon
et al., 2013)

In Table 1, score is the median over the 79 replications of the
sum of the distances dist(simu, data) over the 19 stands and the
four characteristics (initial or final and area or size). A score of
26.06 means that in half of the cases and on average, the relative
distance for one characteristic between the simulated stand and
the corresponding data is lower than 0.3. The reason for this
difference is that data were obtained from field work that was
not carried out to calibrate the model, and thus may contain a
bias due to the altitude or soil type.

Even though values for the plant dynamics parameters were
not found in the literature, experts can provide boundaries for
some of them, allowing assessment of the ecological quality
of the result given by the algorithm. First, the parameters
distanceCompetition and distanceParent are close to what is
expected according to field experience. Then the distribution
for the dispersal of individuals is close to that suggested by spe-
cialists (Figure A.1c). Figure A.1d plots the mortality rate of a
crown according to its biomass. We note that a crown that is
not mown keeps a very low mortality rate, in agreement with
field observations. Indeed, to compare with the value in Smith
et al. (2007), using Equation (8) and the parameter values from
calibration, the probability that a crown dies before 4 months is
calculated. This quantity is equal to 0.0027, which has the same
order of magnitude as the value found in Smith et al. (2007) for
the probability of a rhizome segment dying in a 4-month period
(0.0083).

Finally, the ratio between the value of K (maximum biomass,
that is likely to be found for the oldest crown, i.e. in the centre
of the stand when there is no mowing), and a0, the biomass of a
crown at birth (rather than at the periphery) equals 7.4 (the ratio
is expected to be around 10 in Adachi et al. (1996)).

3.2. Influence of management parameters and initial popula-
tion size

In this section, the aim is to find statistical relationships be-
tween the explanatory variables (management parameters or
initial population size) and model outputs (mean area and size
of a stand).

We consider the two following samplings:

• In sampling1, we make τ vary in [0, 15] in steps of 0.5, T
in [0, 16] in steps of 1 and initialPopS ize is set to 500 or
1500. We run 50 simulations of the stochastic model for
each set of values. sampling1 has a high sampling rate on
τ and T , with high values for the initial population size. It
is used in Sections 3.2.1 and 3.2.2 to study the influence of
τ and T more precisely.

• In sampling2, we make τ vary in [0, 14] in steps of 2, T
in [0, 16] in steps of 2 and initialPopS ize in [50, 1200] in
steps of 50. We run 50 simulations of the stochastic model
for each set of values. sampling2 has a high sampling rate
on the initial population size. It is used in Section 3.2.3 to
study its influence more precisely.

3.2.1. Influence of management duration T
In this section, the first sampling (sampling1) is used to study

the influence of the management duration T on the final mean
areas and sizes. Given τ and a value of the initial population
size, we perform:

• a truncated quadratic regression for the mean final area;

• a non-linear regression on strictly positive values for the
mean final population size, using the function f (T ) =

initialPopS ize ∗ exp(−T/rate), with rate being a constant
on which the algorithm nls maximizes R2. This constant
rate is different for each set of parameters, since it depends
on the values of τ and initialPopS ize. In Section 3.2.4, we
study this dependency.

It turns out that for values of τ ≤ 2.5, the mean area remains
close to its initial value at time T = 0 (a maximum relative
difference of 3 m2), and the variation is rather linear, but the
corresponding R2 values are below 0.9. Figure 3 gives an ex-
ample of the linear regression on the mean area as a function of
management duration T , for fixed given values of τ ≤ 2.5 and
initial population size.

R2 and RMSE values enable us to conclude that the mean
final area depends quadratically on the management duration
T when τ > 2.5. Indeed, 47 regressions out of the 50 in the
sampling (variation of initial Population size and τ > 2.5) lead
to an R2 value larger than 0.95. The maximum value of RMSE
over these 50 regressions is 1.31 m2, which is low compared to
the mean initial area, which has values 20 m2 or 60 m2. Figure
4 gives an example of the quadratic regression on the mean area
as a function of management duration T for fixed given values
of τ and initial population size.
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Figure 3: Linear regression of the mean final area as a function of management
duration T , with τ = 0.5 year−1 and initialPopS ize = 1500.

Figure 4: Quadratic regression of the mean final area as a function of manage-
ment duration T , with τ = 8 year−1 and initialPopS ize = 500. For the last
three points in the bottom right-hand corner, at least half of the 50 simulations
lead to extinction.

These results give information on the influence of the dura-
tion of the management project on stand growth. A first fact,
very important for management, is that it is not sufficient to
mow to decrease the population size and area: if the number
of mowings per year is too low (less than 2.5 in the present
case), the population size and area increase during the manage-
ment project. Figure 5 plots the quadratic regression curves for
the average final area with respect to the duration of the man-
agement project (T , on the abscissa), obtained for different τ.
A second important fact for management is that eradication of
a knotweed stand initially covering 60 m2 cannot be expected
in less than 11 years (for 15 mowing events a year). The fig-
ure also illustrates the stand surface reduction in terms of final
mean area when mowing one more time per year. For example,
mowing six times a year instead of five, over 10 years, reduces
the final surface of the stand by 4 m2 on average (looking at the
section T = 10 in Figure 5).

As for the area, the size varies linearly for values of τ ≤ 2.5
(R2 around 0.9). When τ > 2.5, R2 and RMSE values enable us
to conclude that the mean final size depends exponentially on
the management duration project T . Indeed, all 50 regressions
in the sampling (variation of initial Population size and τ > 2.5)

Figure 5: Quadratic regression curves of the mean final area as a function of T ,
for different values of τ (low in light colours, up to 15 mowings per year in dark
colours), and we set initialPopS ize = 1500 and proportionMowing = 0.9.

lead to an R2 value greater than 0.95. The maximum value of
RMSE over these 50 regressions is 39 crowns, which is low
compared to the initial population size, which has values of 500
crowns or 1500 crowns.

Figure 6 gives an example of the quadratic regression on the
mean area as a function of management duration T for fixed
given values of τ and the initial population size.

Figure 6: Non-linear regression of the mean final size as a function of manage-
ment duration project T with τ = 8 years−1 and initial initialPopS ize = 500.
For the last three points in the bottom right-hand corner, at least half of the 50
simulations lead to extinction.

3.2.2. Influence of the mean number of mowing events a year τ
In this section, we use the first sampling (sampling1) to study

the influence of the mean number of mowing events a year on
the final mean areas and sizes. Given a value of the initial pop-
ulation size and T , we perform:

• a linear regression on strictly positive values of outputs for
the mean area;
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• a non-linear regression on strictly positive values for the
mean final population size, using the function f (τ) =

initialPopS ize ∗ exp(−τ/rate), with rate being a constant
on which the algorithm nls minimizes the sum of squared
errors. This constant rate differs for each set of parameters
since it depends on the values of T and initialPopS ize.
As mentioned for the similar constant in Section 3.2.1, we
study this dependency in Section 3.2.4.

The linear regression presented below holds for τ > 2.5 (as
in Section 3.2.1) and T ≥ 2 (to have a decreasing population).

The R2 and RMSE values enable us to conclude that the mean
final area depends linearly on the mean number of mowing
events τ. Indeed, 24 regressions out of the 30 in the sampling
(variation of initial Population size and T ≥ 2) lead to an R2

value larger than 0.95. The maximum value of RMSE over these
50 regressions is 2.09 m2, which is low compared to the mean
initial area, which has values 20 m2 or 60 m2.

Figure 7 gives an example of the linear regression on the
mean area as a function of the mean number of moving events
for fixed given values of T and initial population size.

Figure 7: Linear regression of the mean final area as a function of the mean
number of mowing events τ with T = 8 years and initialPopS ize = 1500.

We also conclude that the mean final size depends exponen-
tially on the mean number of mowing events τ. Indeed, the 30
regressions in the sampling (variation of initial Population size
and T ≥ 2) lead to an R2 value greater than 0.95. The maximum
value of RMSE over these 50 regressions is 64 crowns, which
is low compared to the initial population size, which has values
of 500 crowns or 1500 crowns.

Figure 8 gives an example of the non-linear regression on the
mean size as a function of the mean number of moving events
for fixed given values of T and the initial population size.

3.2.3. Influence of the initial population size
In this section, we use the second sampling (sampling2) to

study the influence of the initial population size on the final
mean areas and sizes. Given a value for τ and T , we perform
a linear regression on strictly positive output values. Due to
the wide range of values for the initial population size in the
sampling2, too many extinctions may occur for a given set of

Figure 8: Non-linear regression of the mean final size as a function of the mean
number of mowing events τ with T = 8 years and initialPopS ize = 1500.

management parameters. We therefore perform the regression
only if there are at least five strictly positive output values.

R2 and RMSE values enable us to conclude that both the
mean final area and size depend linearly on initial population
size. Indeed, in both cases, 60 regressions out of the 63 regres-
sions among the 72 management sets in the sampling lead to an
R2 value greater than 0.95. The maximum value of RMSE over
these 63 regressions is 1.1 m2 (resp., 18 crowns) for the mean
final area (resp., size) case, which is low compared to the mean
initial area (resp., initial population size), which ranges from 2
m2 to 48 m2 (resp., from 50 crowns to 1200 crowns).

Note that the influence of the initial population size on the
initial area is also linear. Indeed, sampling2 contains the case
T = 0, and for this specific value of T the final area is the initial
area.

Figures 9 and 10, respectively, give an example of the linear
regression on the mean size and the mean area as functions of
initial population size for fixed given values of T and τ.

Figure 9: Linear regression of the mean final size as a function of initial popu-
lation size with T = 8 years and τ = 4 years−1.

3.2.4. Formulas for the mean final sizes and areas, as functions
of τ, T and the initial population size

We summarize results of the regressions performed in Table
2.
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Figure 10: Linear regression of the mean final area as a function of initial pop-
ulation size with T = 8 years and τ = 4 years−1.

Parameter Mean output Variation R2 > 0.95 RMSE
T for τ ≥ 2.5 final area quadratic↘ 47/50 1.31
T for τ ≥ 2.5 final size exponential↘ 50/50 39
τ for τ ≥ 2.5 final area linear↘ 24/30 2.09
τ for τ ≥ 2.5 final size exponential↘ 30/30 64
initialPopS ize final area linear↗ 60/63 1.1
initialPopS ize final size linear↗ 60/63 18

Table 2: Summary of the regression results of Sections 3.2.1-3.2.3.

In Sections 3.2.1 to 3.2.3, we studied the influence of one pa-
rameter, while the two others were set constant. The two previ-
ous samplings introduced at the very beginning of Section 3.2
were designed to control the variation of management parame-
ters and initial population size, in order to investigate their in-
fluence on the model outputs. Based on results in Sections 3.2.1
to 3.2.3, we are now able to propose a formula for the mean ar-
eas and sizes as a function of the two management parameters
(the mean number of mowing events a year (τ) and the manage-
ment project duration (T )) and the initial population size. We
use a Sobol sampling (which maximizes the discrepancy of the
sequence, i.e. the space is evenly covered) of 5000 points with
τ ∈ [0; 15.0], T ∈ [0; 20], and initialPopS ize ∈ [100; 1500].
For the same reason as before, we consider the case of τ ≥ 2.5.
Equations (11) and (12) summarize relationships between final
outputs, management parameters and initial population size:

Mean Final S ize = initialPopS ize ∗ exp(−T.(τ− a)/b), (11)

with a, b ∈ R constants, and

Mean Final Area = max((c×τ+d)∗T 2+0.04∗initialPopS ize, 0)
(12)

with c, d ∈ R constants.

We now discuss the results of the non-linear regression with re-
spect to the two management parameters (T and τ ≥ 2.5) and
initial population size (the sampling contains 4332 values for
the triplet (T , τ, initialPopS ize)). R2 and RMSE between the
predicted values and the data for the mean size are equal to 0.99
and 26.12 crowns, respectively. The 95% confidence intervals
for the constants a and b obtained with R are a ∈ [0.90; 0.94]
and b ∈ [20.46; 20.77]. R2 and RMSE between the predicted

values and the data for the mean area are equal to 0.99 and 2.23
m2, respectively. Moreover, the corresponding 95% confidence
intervals for the constants c and d are c ∈ [−0.0342;−0.0336]
and d ∈ [0.0960; 0.0998], respectively. Taking T = 0 in the
right-hand side of Equations (11) and (12), gives initialPopS ize
and initialPopS ize ∗ 0.04, respectively. The last quantity there-
fore corresponds to the mean initial area. There is indeed a
linear dependency between the mean initial area and the initial
population size.
It is important to note that the results obtained for the mean
output quantities are still relevant for direct outputs. Figure 11
illustrates this point, plotting the formula (11) with T varying
and for given values of τ and initial population size. We empha-
size that the red line in Figure 11 was obtained with a regression
on a far larger set of points than the subset selected to plot this
example.

Figure 11: Exponential regression for the mean final size as a function of man-
agement duration (T ). The red line is the prediction function of T defined by
Equation (11). Black circles represent stand sizes resulting from 50 replications
with τ = 4, initialpopulationsize = 1000, letting T vary.

Equations (11) and (12) enable us to find which parameter most
influences model outputs, and thus on which one it is better to
concentrate management efforts. To do so, for each value of the
triplet (T ,τ,initialPopS ize) the final size and area were com-
pared according to Equations (11) and (12), for the three fol-
lowing parameter value combinations: (T +1,τ,initialPopS ize),
(T ,τ + 1,initialPopS ize) and (T ,τ,initialPopS ize × 0.9). Each
plot on Figures 12 and 13 corresponds to a fixed value of
initialPopS ize, with τ varying on the x-axis and T varying on
the y-axis, and with each triplet associates the most important
parameter in a management perspective, that is the parameter
whose modification produces the lowest output (it is not neces-
sarily unique). Brown zones correspond to the set of parameter
values that lead to eradication; therefore, in this zone no gain
can be expected from any modification. Figure 12 shows that,
out of the extinction zones, T or τ has the greatest influence on
final size and makes it possible to determine the most efficient
management modification. Most particularly, when τ is low, it
is more efficient in terms of size reduction to mow once more
each year, and conversely, when T is low, it is more efficient to
continue mowing 1 more year. As for the final area, we observe
in Figure 13 that areas corresponding to the greatest influence
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of T or τ are reduced compared to Figure 12, in favour of the
area of greatest influence of initialPopS ize. In these parame-
ter value regions, beginning the management project on smaller
stands (size equal to 90% of reference size) has a greater impact
on the final area than mowing once each year or over a period of
time 1 year longer; therefore, in these conditions, early detec-
tion and mowing of stands should be encouraged. Note, how-
ever, that to stop invasion, one always needs to increase both τ
and T .

Figure 12: Parameters having the greatest influence on final size. Each plot
corresponds to a fixed value of initialPopS ize specified above the plots (from
100 to 1500 crowns), τ varies on the x-axis, and T varies on the y-axis.

Figure 13: Parameters having the greatest influence on final area. Each plot
corresponds to a fixed value of initialPopS ize specified above the plots (from
100 to 1500 crowns), τ varies on the x-axis, and T varies on the y-axis.

4. Discussion

In this paper, we proposed a stochastic individual-based model
for the growth of a stand of Japanese knotweed including mow-
ing as a management technique. Then, we calibrated plant dy-
namics parameters with field data in Section 3.1. The set of
parameters obtained was in agreement with values of param-
eters available in the literature and with our field experience.
In Sections 3.2.1 - 3.2.3 we studied the influence of the initial
population size, the mean number of mowing events a year and

the management project duration on the mean area and size of
stands. We also obtained formulas for the mean area and size
of a knotweed stand, as functions of those management param-
eters (for τ > 2.5) and initial population size. We showed that
mowing once a year is not sufficient to decrease the popula-
tion size and area. Indeed, if the number of mowing events per
year is too low (lower than 2.5 here), the population size and
area increase during the management project. We also showed
how those results could be used by managers. Simulation re-
sults suggest the minimum duration of the management project
necessary to achieve eradication (if it is possible at all, given
a certain frequency of mowing). Figure 5 plots the quadratic
regression curves for the average final area with respect to the
duration of the management project (T ), obtained for different
values of τ and for fixed chosen values of initialPopS ize and
proportionMowing. The figure indicates the potential benefit,
in terms of invaded area reduction, of mowing the stand once
more each year. More generally, Equations (11) and (12), sum-
marizing the relation between final outputs, management pa-
rameters and initial population size, make it possible to answer
questions on the efficiency of different mowing strategies.
Following Smith et al. (2007) and Dauer and Jongejans (2013),
we assumed that the invasion occurs in a homogeneous area.
Models that take into account the inhomogeneity of the invaded
land are often static models (no temporal component (Looking-
bill et al., 2014; Buchadas et al., 2017; Hui and Richardson,
2017)). Lookingbill et al. (2014) used indices such as habitat
suitability, constructed from field data such as humidity or soil
type, to produce invasibility maps. These maps assign a score
to each zone which describes its probability of being invaded.
Invasibility (and invasiveness) in ecological networks can also
be related to plant traits (Hui et al., 2016).
Another simplification in our model is that we did not take into
account the dispersal of fragments of rhizome due to mowing.
This may be a significant means of propagation of the plant
in some conditions and it contributes to its invasiveness (Sásik
and Eliás, 2006). Dispersal has to be considered if one wants
to model the invasion of Japanese knotweed at the scale of a
region composed of several stands. This will be the subject of
future work. We could formulate this problem in the formalism
of the viability theory (Aubin, 1991). In this framework, the
dynamics of the system depends on the system state and on
controls. One objective is to prove the existence of controls and
to find initial values of the system such that the system state
remains in a set of constraints (e.g. the invaded area below a
given threshold). For example, managers could be interested in
controlling the density of Japanese knotweed. Then we could
study the resilience of the system, that is to say its ability to
recover a property after a perturbation.
The importance of integration (biomass transfer between
crowns) is still under debate. In Price et al. (2002), the authors
note that there is relatively little integration, whereas in Suzuki
(1994) the authors found greater integration. We did not con-
sider this process in the model. Adding this phenomenon could
produce simulation results closer to reality.
The field data we used for the calibration were extracted from
Martin et al. (2018). The measurements were taken in 2008 and
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2015 on stands that were mown or not mown. For each stand,
data provide information on the management technique used by
the land owner: the frequency of mowing and an estimation of
the proportion of the mown stand. Calibration results for some
of the plant dynamics parameters based on these measurements
are in agreement with data found in the literature.
The model is written in the formalism of measure-valued
stochastic processes. The tools we used here in the case of a
Japanese knotweed stand may be used by practitioners to test
for different management options (such as one-side mowing)
and objectives (containment or eradication). Moreover, they
can also be used in a more general context. In particular, we
could apply this method to other invasive plants, such as seed
dispersal species. One could even allow individuals to move in
such models. In Leman (2016), the author took into account
the spatial motion in an individual-based stochastic population
model. Furthermore, including sexual reproduction of individ-
uals, as in Smadi et al. (2018), would also enable one to con-
sider animal invasive species, such as mosquitoes (Juliano and
Philip Lounibos, 2005) or feral cats (Baker and Bode, 2016).
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Appendix A. Summary of model parameters

Table A.1 summarizes the plant dynamic parameters. We spec-
ify parameter units for those that have a biological meaning.

Variable Description Unit
Biomass
K maximum biomass (Equation (7)) g
L biomass growth rate for low biomass (Equation (7)) year−1

a0 initial biomass (of a crown at birth) g
Mowing

mowingParameter in the mowing effect function in Equation (5) g−1

Mortality
deathParameterS caling mortality rate for the low biomasses in Equation (9) year−1

deathParameterDecrease decay rate of mortality function in Equation (9) g−1

Birth
distanceParent apical dominance distance (Equation (1)) m
distanceCompetition intra-specific competition distance (Equation (4)) m
b̄ birth rate (under ideal conditions) year−1

(shape, scale) Gamma law, dispersion of new individual

Table A.1: Summary of model parameters

We have the following management parameters:

• mean number of mowing events a year: τ;

• management project duration: T ;

• proportion of mown crowns: proportionMowing;

and initial population size parameter: initialPopS ize.

Appendix B. Description of the algorithm used to simulate
a solution of Equation (10).

We present one step of Gillespie’s algorithm used to simulate
the stand dynamics. Three types of events may occur: a birth,
a death or the mowing of a proportion proportionMowing of
individuals in the population. Suppose we have N individuals
at a time t. We start by calculating the time of the next event,
which requires the sum of the birth, death and mowing event
rates. The law of this time only depends on the current popula-
tion state given that the process is Markovian.
If it is a birth event, we select the parent uniformly at random
in the population. We check whether the individual selected to
be the parent does not already have too many neighbours at a
distance lower than distanceParent. If this occurs, we draw the
position of the new individual (child) according to the Gamma
law described in "Dispersal of the newborn individual" of Sec-
tion 2.1 (with an angle chosen uniformly around the potential
parent). If the child’s position falls into the set C of Equation
(4) (i.e. it does not fall into an intra-specific competition zone),
then the individual is born at this position, and the new popu-
lation size is N + 1. Otherwise, i.e. if the parent has already
enough crowns close to it, or if the new individual to be born is
out of the set C, then there is no birth, and the population size
remains N.
If the event is a mowing event, then we mow every individual
with probability proportionMowing: we replace its biomass a
by a ∗ F(a).
Finally, if the event is a death event, then the individual likely to
die is drawn uniformly at random, and we choose with the real-
ization of a random variable whether this individual really dies
according to its mortality rate, which depends on its biomass. If
it dies, it is taken out of the population and the new population
size is N − 1; otherwise, nothing happens.
Between two events, the biomass of each individual grows in a
deterministic way. The algorithm stops as soon as there are no
more individuals in the population.

For the simulations, we have to specify an initial population (at
time 0, positions and biomass) that will evolve. To create an
initial population, we use the algorithm above with initially one
individual until the population reaches a prescribed size, with a
low management technique (τ = 1 and proportionMowing =

0.9). Indeed, if we put a higher value of τ, we cannot often
create the initial population because the original individual dies
before producing offspring. In this spirit, we also allow several
attempts in the algorithm to create the initial population.

Appendix C. Plots of functions defined in Section 2.1 with
plant dynamics parameters from the calibra-
tion
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(a) (b)

(c) (d)

Figure A.1: Plots of functions defined in Section 2.1 with plant dynamics pa-
rameters from the calibration.
Figure A.1a: Function for the effect of mowing, Equation (5) with parameter
values from the calibration (Table 1).
Figure A.1b: Biomass dynamics of an individual, with no mowing events for
20 years (Equation (7)) with parameter values from the calibration (Table 1).
Figure A.1c: Gamma law for the distance of dispersion with parameter values
from the calibration (Table 1).
Figure A.1d: Mortality rate, as a function of biomass (Equation (9)) with pa-
rameter values from the calibration (Table 1).
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