
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007 933

Approximating Viability Kernels
With Support Vector Machines

Guillaume Deffuant, Laetitia Chapel, and Sophie Martin

Abstract—We propose an algorithm which performs a progressive ap-
proximation of a viability kernel, iteratively using a classification method.
We establish the mathematical conditions that the classification method
should fulfill to guarantee the convergence to the actual viability kernel.
We study more particularly the use of support vector machines (SVMs) as
classification techniques. We show that they make possible to use gradient
optimisation techniques to find a viable control at each time step, and over
several time steps. This allows us to avoid the exponential growth of the
computing time with the dimension of the control space. It also provides
simple and efficient control procedures. We illustrate the method with some
examples inspired from ecology.

Index Terms—Dynamical systems, optimal control, support vector ma-
chines (SVMs), viability kernel.

I. INTRODUCTION

Viability theory [1] aims at controlling dynamical systems with the
goal to maintain them inside a given set of admissible states K , here
called the viability constraint set. Such a problem is frequent in ecology
or economics, where the systems die or badly deteriorate when they
leave some regions of the state space [2]–[4]. The approach can be also
adapted to robotics and control in general [5]–[7].

The main concepts of the viability theory are as follows.
• Viable state: A state is called viable if there exists at least one

control function for which the whole trajectory from this state
remains in K indefinitely.

• Viability kernel: The set of all viable states is called the viability
kernel and is denoted Viab(K).

Aubin [1] proved the viability theorems which enable to determine vi-
able states, without considering the combinatorial exploration of con-
trol actions series. These theorems also provide the control functions
that maintain viability. The simplest is the “heavy” control procedure,
which we will use later on in this note. This procedure specifies to
change the control only if the system reaches the boundary of the vi-
ability kernel, and to choose the first control which keeps the system
inside the kernel (by theorem, we are sure that such a control exists).
Such a procedure is also particularly relevant to assisted control prob-
lems [5]: The control is corrected automatically only when the user
control would lead the system to cross the viability kernel boundary.

References [5] and [6] suppose the availability of a procedure stating
if a given state is in the viability kernel or not. They generate a set
of state examples, associated with +1 when the state is viable, and
�1 otherwise. Then they use a learning procedure (nearest neighbours
or SVMs) to approximate the viability kernel. However, in general,
stating directly if a given state is viable or not is computationally un-
tractable, especially when the control space is of large dimension. It
requires a combinatorial search over a large number of time steps (the
time horizon), which is exponential in nature. The method adopted in
[7], defining a continuous barrier function on the constraint set works

Manuscript received December 5, 2005; revised June 22, 2006 and December
4, 2006. Recommended by Associate Editor C. T. Abdallah.

The authors are with the Cemagref, Laboratoire d’Ingénierie
des Systèmes Complexes, F-63172 Aubière Cedex, France (e-mail:
guillaume.deffuant@cemagref.fr; laetitia.chapel@cemagref.fr; sophie.
martin@cemagref.fr).

Digital Object Identifier 10.1109/TAC.2007.895881

probably well when the dynamics is not too complex, but in general,
it gives no guarantee of good control, because the shape of the barrier
can be quite different from the one of the actual viability kernel.

In this note, we propose an algorithm which, given the dynamics of
the system and the viability constraints, provides an approximation of
a viability kernel with a reasonable computational effort, using a clas-
sification procedure. Our method builds on Saint-Pierre’s algorithm [8]
which computes the exact discrete viability kernel of the approximated
discrete problem defined on a grid.

We consider the support vector machines (SVMs) [9], [10] as a par-
ticularly relevant classification procedure in this context. Their main
interest is that they directly provide a kind of barrier function, which
can be used to search for viable controls with a gradient optimisation
procedure. Such procedures are much less time consuming than the sys-
tematic search performed by Saint-Pierre, which can only be limited to
very small dimension control spaces. Moreover, it gives the possibility
to optimise over several time steps, without an exponential growth of
the computing time. We propose some first experiments of the method
on a simple dynamical system representing the evolution of a popula-
tion on a limited space. The first results show that the optimisation over
several time steps significantly improves the viability kernel approxi-
mation, for a given grid resolution. Moreover, we briefly describe an
example in which the method gives satisfactory results with a control
space of dimension 51.

In Section II, we express the new algorithm of viability kernel ap-
proximation, using a classification procedure, and we state the condi-
tions that such a classification procedure should fulfill. In Section III,
we consider the use of SVMs, describe the method allowing to opti-
mise controls over several time steps and the associated “heavy” con-
trol procedure. Section IV reports the results of a set of experiments
in different dimensions. Finally, we discuss the results and draw some
perspectives.

II. APPROXIMATING A VIABILITY KERNEL

WITH A CLASSIFICATION METHOD

A. Notations

We consider a dynamical system defined by its state ~x(t) 2 X and
assumes that its evolution can be influenced by a control ~u(t)

~x0(t) = ' (~x(t); ~u(t))

~u(t) 2 U (~x(t)) :

(1a)
(1b)

We suppose X � Rn. The set of available controls depends on the
state, ~u(t) is chosen in a subset U(~x(t)) � Rq . We consider a viability
constraint set K , a compact subset ofX , in which we want to maintain
the system. The subset Viab(K) of all viable states x0 2 K is called
the viability kernel of K :

Viab(K) = f~x0 2 K; 9~u(:);8t � 0; ~x(t) 2 Kg : (2)

We discretise the dynamical system in time. We consider a given
time interval dt, and we define the set-valued map G : X X

G(~x) = f~x+ '(~x; ~u)dt; for ~u 2 U(~x)g : (3)

We suppose that G is �-Lipschitz with closed images. We would like
to approximate the viability kernel ViabG(K) of K under the discrete
dynamical system defined by G, which is the subset of K from which

0018-9286/$25.00 © 2007 IEEE

934 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

it is possible to maintain the system indefinitely insideK . The viability
theorems show that ViabG(K) is the largest subset E of K such that

8~x 2 E;G(~x) \E 6= ;: (4)

We define a grid Kh as a finite set of elements of K , such that:

8~x 2 K; 9~xh 2 Kh; such that k~x� ~xhk � �(h) (5)

and �(h)! 0 when h! 0. Such a grid exists since K is compact.
The algorithm presented in the next section proceeds in several steps,

progressively defining the viability kernel approximation. At each step
n, we define a discrete set Kn

h � Kn�1
h � Kh, and a continuous

set, noted L(Kn
h), which is a generalization from this discrete set, and

which constitutes the current approximation of the viability kernel.
Moreover, we use the following notations.
• l is a classifier learning procedure which associates a set S of

training tuples (~xi; yi) 2 K�f�1; 1g with a classification func-
tion lS(x) : K ! f�1; 1g.

• d(E;F) is the distance between two closed subsets E and F .
• EnF is the complementary set ofF inE (supposing thatF � E).
• B is the ball of center 0 and radius 1.

B. The Algorithm of Viability Kernel Approximation Using a
Classification Procedure

The steps of the algorithm are the following.

• Initialize the sets K0
h = Kh and L(K0

h) = K .
• Iterate:

— Define the discrete set Kn+1
h , from Kn

h and L(Kn
h) as

follows:

K
n+1
h =f~xh 2 K

n
h ; such that d (G(~xh); L (Kn

h))���(h)g : (6)

— If Kn+1
h 6= Kn

h then run the classification procedure l on the
learning sample obtained with the points ~xh of the grid Kh,
associated with label +1 if ~xh 2 Kn+1

h , and with label �1
otherwise. Let ln+1h be the obtained classification function
from K to f�1; 1g. L(Kn+1

h) is defined as follows:1

L K
n+1
h = ~x 2 K; such that ln+1h (~x) = +1 : (7)

— Else, stop and return L(Kn
h).

C. Convergence of the Algorithm

The convergence of the algorithm to the actual viability kernel as the
resolution h tends to 0 is guaranteed when the classification procedure
satisfies some conditions which are specified in the following theorem.
These conditions express that any point of L(Kn

h) must be close to
one point of Kh with a positive label, and any point of K n L(Kn

h)
must be close to a point of Kh with a negative label. The constraint
on the distance to the point with a negative label is stricter because
if L(Kn

h) is smaller than Viab(K), the mistake cannot be fixed in the
next iterations (whereas it can be fixed when the mistake is on the other
side).

Theorem 1: If there exists a real � � 1 such that for any iteration
n, the approximation L(Kn

h) satisfies the following conditions:

8~x 2 L (Kn
h) d (~x;Kn

h) � ��(h) (8)

1We suppose that L(K) is a closed set without loss of generality,
because otherwise we define it as the closure of the set defined in (7).

8~x 2 K n L (Kn
h) d (~x;Kh nK

n
h) � �(h) (9)

then, the algorithm of viability kernel approximation provides a result
which converges to the actual viability kernel when the resolution h of
the grid tends to 0.

Proof: The proof of convergence involves four steps.
1) The algorithm stops after a finite number of steps p.

At each step, we have: Kn+1
h � Kn

h , by construction. Because
Kh is finite, we shall get, after a finite number of steps p:Kp+1

h =
K
p

h .
2) For all n, the viability kernel ofK underG is included inL(Kn

h).
We haveViabG(K) � K = L(K0

h). Suppose thatViabG(K) �
L(Kn

h). Consider ~x 62 L(Kn+1
h).

• If ~x 62 L(Kn
h) then ~x is not viable, by hypothesis.

• If ~x 2 L(Kn
h), because of condition 9, we have:

9 ~xh 2 Kh nK
n+1
h such that k~x� ~xhk � �(h): (10)

Moreover, by construction of the algorithm, we have:

~xh 2 Kh nK
n+1
h) d (G(~xh); L (Kn

h)) > ��(h): (11)

Because G is �-Lipschitz:

G(~x) � (G(~xh) + ��(h)B) : (12)

Therefore, G(~x) � (K nL(Kn
h)). By hypothesis, any point of

K n L(Kn
h) is not viable, therefore all the successors of ~x are

not viable, which implies that ~x is not viable.
Therefore, ~x 62 L(Kn+1

h)) ~x not viable, thus ViabG(K) �
L(Kn+1

h).
3) The result of the algorithm, L(Kp

h), is included in the viability
kernel of K under G + �(1 + �)�(h)B.
Let Gh : X ! X , such that Gh(~x) = G(~x) + �(1 + �)�(h)B.
Gh has closed images. Consider a point ~x of L(Kp

h). Because of
condition 8:

9~xh 2 K
p

h such that k~x� ~xhk � ��(h): (13)

Since, Kp+1

h = K
p

h , ~xh 2 K
p+1

h and, by definition of the
algorithm

~xh 2 K
p+1

h) d (G(~xh); L (Kp

h)) � ��(h): (14)

Because G is �-Lipschitz, and using the triangular inequality:

d (G(~x); L (Kp

h)) � �(1 + �)�(h): (15)

This implies that Gh(~x) \ L(K
p

h) 6= ;. Therefore, from any ~x 2
K
p

h , there exists a trajectory which remains indefinitely in K
p

h .
Therefore, Kp

h � ViabG (K).
4) Conclusion.

Since G is �-Lipschitz and K is compact,

8� > 0;9� > 0 such that h < �

) ViabG (K) � (ViabG(K) + �B) : (16)

Moreover, for all h > 0, ViabG(K) � L(Kp

h) � ViabG (K).
Therefore

L (Kp

h)! ViabG(K) when h! 0: (17)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007 935

III. SVMS AS PARTICULARLY RELEVANT

CLASSIFICATION PROCEDURES

A. Presentation of SVMs

Here, we review some important features of the SVMs. For more
details; see, for instance, [10].

We consider a set of examples f(~xi; yi)gNi=1, where ~xi is a real
vector, and yi 2 f�1; 1g is the label.

SVMs define separations between the examples of each label. To in-
troduce some nonlinearity in the separating function, we project the
examples into a feature space ((~x) denotes the projection of ~x into
the feature space). Fortunately, this function does not need to be ex-
plicit; the kernel2 k, defining a scalar product of two projections into
the feature space (k(~x; ~y) = h (~x); (~y)), is sufficient to make all
computations. The SVM is obtained by solving a quadratic problem
with linear constraints.

The solution of the quadratic problem defines the function f , which
is then used for the classification: A point ~x is labelled +1, if f(~x) is
positive, �1, otherwise. The expression of f is:

f(~x)= h~w; (~x)i+ b

=

N

i=1

�iyik(~xi; ~x)+b; with �i�0; 1� i�N: (18)

The parameters �i come from the lagrangian expression of the
problem. The points ~xi for which �i > 0 are the support vectors.
They are sufficient to define the function. When k is non linear, the
resulting function is also non linear. It is particularly relevant in our
context to use a gaussian kernel k defined in (19) because it leads to
SVMs which can approximate any classification function:

k(~x; ~y) = exp
�k~x� ~yk2

2�2
: (19)

The practical use of SVM with a gaussian kernel requires the values
of two parameters. We will use such a function to define the continuous
sets L(Kn

h).

B. Fulfillment of the Theorem Conditions

We have no rigorous demonstration that SVM classifiers fulfill the
theorem conditions. However, in practice, in the examples we tested,
we easily found SVM parameters leading to a boundary which makes
no classification error, and has no irregularities higher than �(h), which
implies that the conditions are met. Some arguments let us think that it
should generally be the case. First consider the nearest neighbour (NN)
classification procedure: This procedure attributes to point ~x the label
(+1 or �1) of its closest neighbour of Kh. It can be easily shown that
this method fulfills conditions (8) and (9) with � = 1. If L(Kn

h) is
defined as the subset of K which are given a positive label with the
NN procedure, then by definition, each point of L(Kn

h) will be closer
than �(h) to a point of Kn

h , and each point of K n L(Kn
h) will be

also closer than �(h) to a point of Kh nK
n
h . Now, consider the SVM

function fn obtained from the learning set defined by the discrete set
Kn
h . With a Gaussian kernel, the feature space is of infinite dimension,

and it is always possible to find parameter values that will lead to no
classification errors. As soon as � � �(h), the boundary of the SVM
classification will be smoother than the one of the NN classifier. In this

2In this section, the term “kernel” refers to a SVM kernel, a distinct and un-
related meaning from when used elsewhere to refer to a viability kernel.

case, if we define the approximation L(Kn
h) from the sample defined

by Kn
h as:

L (Kn
h) = f~x 2 K; such that fn(~x) � 0g : (20)

Conditions (8) and (9) are fulfilled with � = 1. One may wonder why
not using the NN classifier, instead of SVMs. One important reason
is that SVMs are more efficient classifiers, especially in high dimen-
sion. The other reason is that SVMs provide easy means to optimise
the control by a gradient ascent, and therefore to avoid the exponential
growth of the computational time when the dimension of the control
space increases.

C. Optimizing the Control by a Gradient Ascent

The analytical expression of function fn can be used to find controls
which keep the system inside the current kernel approximation. In the
neighbourhood of the boundary of L(Kn

h), the directions where fn(~x)
increases are going inside L(Kn

h), and the directions where fn(~x) de-
creases are going outside L(Kn

h). Therefore, fn(~x) provides directly
a kind of barrier function, similar to the one used in [7], except that
the barrier is not on the boundary of K , but on approximations of the
viability kernel (and is not based on a logarithmic function). In this con-
text, maximising fn(~x) provides a control that keeps the system inside
L(Kn

h), if this control exists.
It is also possible to determine a sequence of optimal controls on

j time steps in a reasonable computational time. Let us first define
t(~x; ~u1; . . . ; ~uj), the point reached after j time steps

t(~x; ~u1) = ~x + '(~x; ~u1)dt; (21a)

t(~x; ~u1; . . . ; ~uj) = t(~x; ~u1; . . . ; ~uj�1)

+ ' (t(~x; ~u1; . . . ; ~uj�1); ~uj)dt: (21b)

We consider a point t(~x; ~u1; . . . ; ~uj) which is out of L(Kn
h), but in

the neighbourhood of the boundary. For instance we consider 0 >

fn(t(~x; ~u1; . . . ; ~uj)) > �1. Then, we perform a gradient ascent, until
either we find controls that put the system back inside L(Kn

h), or we
reach the maximum. The gradient ascent is done as follows. Let � be
a parameter (0 < � < 1). We initialise (~u01; . . . ; ~u

0
j) = (~u1; . . . ; ~uj),

and then we iterate

~u
k+1
1 ; . . . ; ~uk+1j = ~u

k
1 ; . . . ; ~u

k
j + �rufn t ~x; ~u

k
1 ; . . . ; ~u

k
j :

(22)
The necessary derivatives can be directly approximated, or analytically
computed when the derivatives of' are easy to express. This procedure
must take into account the fact that the controls must remain in set
U(~x). The maximum is reached either when the gradient is null, or
when it is normal to the boundary of U(~x). At the first time step of the
viability kernel approximation, i.e. when there is no SVM yet, we use a
similar procedure on a barrier function on the boundary ofK , as in [7].
This procedure allows us to deal with problems with controls in high
dimension, which is not possible with Saint-Pierre’s algorithm, or with
the method proposed in [5]. Moreover, in the following experiment, we
show that considering several time steps of controls can significantly
improve the viability kernel approximation.

D. SVM Heavy Controller

The principle of heavy control [5], [11] is to change the action ap-
plied on the system only when it approaches the limit of the viability

936 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

kernel. By definition, while this limit is not crossed, there always ex-
ists an action which maintains the system within it. The idea is here to
change the action only when it is necessary. Again, we use the property
that f(x), the function associated with the SVM, can play the role of
a barrier function in the neighbourhood of the viability kernel approx-
imation boundary. More precisely, the procedure is as follows:

Procedure: For � a given positive real number, we define:

A� = f~x; such that f(~x) � �g :

Considering an initial ~x0 2 A�, and a randomly chosen control ~u0 2
U(~x), the procedure associates a control ~un+1 at the (n+1)th iteration
as follows.

• If (~xn+'(~xn; ~un)dt) 2 A�, we keep the same control (~un+1 =
~un),

• Otherwise, ~un+1 = arg max
~u2U(x)

f(~xn + '(~xn; ~u)dt).

In practice, we can define a more or less cautious controller, by an-
ticipating on k time steps instead of one. Starting from ~xn, we check
for i = 1; . . . ; k if applying k times the control ~un, leads to a point
t(~xn; ~un; ~un; . . . ; ~un) which belongs to A�. If it does, we move of
one step with un+1 = un. If not, we determine a sequence of controls
that keep t(~xn; ~un+1; ~un+2; . . . ; ~un+k) inside A�, and we apply the
corresponding control ~un+1.

We are not able yet to provide precise mathematical conditions
which guarantee that this control scheme keeps the system in K . On
the example presented later, it appears that using several time step can
considerably enhances the chances to remain in K . In any case, we
argue that putting the barrier function on the boundary of a reasonably
good approximation of the viability kernel provides much higher
guarantee than putting this barrier on the boundary of K (as it is done
in [7]).

IV. EXPERIMENTS

We use the sequential minimal optimization algorithm to compute
the SVMs, because it has the good property to require a memory space
growing linearly with the sample size [12].

A. Practical Simplification of the Algorithm

In the theorem, we need to determine if the best set of controls yields
a point which is at a distance higher than ��(h) from the set L(Kn

h).
This distance is not direct to compute, and, in a first stage, we approxi-
mated it with an Euler schema, following the gradient of fn. However,
in addition to being time consuming, this operation leads to cautious
approximations and tends to increase the diffusive effect (which is only
partially tackled by the optimisation on several time steps). We noticed
that, for some problems at least, the following simpler rule to define
Kn+1
h

3 leads to much reduced diffusive effects

K
n+1
h = f~xh 2 K

n

h ; such that fn (~xh + '(~xh; ~u
�)dt) � ��

and (~xh + '(~xh; ~u
�)dt) 2 Kg : (23)

We chose � = 1 because it limits the definition of the current kernel
approximation to the�1 margin of the SVM. This means that the sup-
port vectors of label�1 are located inside the approximate kernel, and
generally close to its boundary. This tends to satisfy a condition which
is stricter than (9), but does not guarantee it.

B. Simple Model of Population Growth on a Limited Space

The state (x(t); y(t)) of the system represents the size of a popula-
tion x(t), which grows or diminishes with the evolution rate y(t). The
population must remain in an interval K = [a; b], with a > 0. The
dynamical system was studied by Maltus and later on by Verhulst,

3We wrote it here in the case of a one time step optimisation for sake of sim-
plicity, but the extension to several time steps is straightforward.

Fig. 1. Example of progressive approximation of the viability kernel in two
dimensions for the population problem. The horizontal axis represents the pop-
ulation size (x) and the vertical axis its evolution rate (y). K is the rectangle
which limits the points of the grid. The grid includes 2601 points (51 points per
dimension). The dark points of the grid are the ones belonging to K . The
approximation of the kernel L(K) is represented in gray. The parameter dt is
computed for defining moves of size 2�(h) in one time step and the optimiza-
tion is made on ten time steps.

Fig. 2. Comparison of the final approximation of the viability kernel for opti-
misations with different time steps: On the left, the control optimisation is made
on one time step and on the right on ten time steps. dt is computed for defining
moves of size 2�(h) in one time step.

and then redeveloped by Aubin [13] with an inertia bound. The inertia
bound c limits the derivative of the evolution rate at each time step. The
system in discrete time defined by a time interval dt can be written as
follows:

x(t+ dt)=x(t) + x(t)y(t)dt (24a)

y(t+ dt)=y(t) + u(t)dt with � c � u(t) � +c: (24b)

The advantage of this model is that it is possible to derive analytically
the viability kernel [13] and we can compare the approximation given
by the algorithm with the theoretical viability kernel.

Fig. 1 shows an example of progressive approximation of the vi-
ability kernel. The final approximation of the viability kernel is pre-
sented in Fig. 2, which also shows that increasing the number of time
steps of control optimization enhances the approximation accuracy.

C. Example of Heavy Controller Action

The leeway on the determination of the value of � can be made
up for by using a more or less cautious controller: By anticipating on
several time steps, the initial state tends to go away from the boundary
of A� and to move away from a dangerous area.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007 937

Fig. 3. Example of heavy trajectories from a point (x ; y). The difference
between L(K) and A is in dark gray. The trajectories include 200 time
steps. On the left: two time steps anticipation. On the right: eight time steps
anticipation.

Fig. 3 shows an example of the functioning of the controller for the
population problem in two dimensions. We start from the approxima-
tion of the viability kernel given by Fig. 2 with 10 time steps. We put
� = 12 and we compare two types of controller: The first anticipating
two time steps ahead, and a more cautious one, with ten time steps an-
ticipation. The computation time required to find a control in both cases
is much below the millisecond on a standard PC.

D. Model of the Southern Benguela Ecosystem

We also tested our approach on a more complex model of ecosystem:
The Southern Benguela ecosystem, involving five different groups of
species [3] in a dynamical model of biomass evolution. The state space
is in six dimensions and the controls in 51 dimensions (including the
uncertainty on the coefficients and an evolution rate of the fisheries).
This makes Saint-Pierre’s algorithm impossible to use, because it
would need discretise a 51-dimensional space. We checked that the
results obtained with our approach are similar to the ones obtained in
[3], with a method specifically developed for the problem. Unfortu-
nately, we cannot present the details of these results within the space
of this note (see [14] for details).

V. DISCUSSION

We demonstrated that it is possible to approximate viability kernels
using a classification procedure, if this procedure satisfies some gen-
eral conditions. We also showed that SVMs are an interesting classifi-
cation procedure in this context. The main reason is that SVMs provide
directly a type of barrier function on the limit of the current viability
kernel, which enables to use a gradient method to compute the controls.
This opens the possibility to optimise the control in large dimension
spaces and over several time steps with a reasonable computing time.
We showed on examples that using several time steps significantly im-
proves the final approximation, for a given resolution of the grid, and
that the method allowed us to solve a problem with a control space of
dimension 51. Moreover, the same approach gives the possibility to de-
fine more or less cautious heavy control procedures, with good guaran-
tees to keep the system in the viability kernel approximation. All these
possibilities are new compared with Saint-Pierre’s method.

A lot of work lies ahead. We left aside several theoretical questions
which deserve more rigorous investigations: guarantees for SVMs to
fulfill the conditions of the theorem, guarantees on the control scheme,
adaptation of the theoretical framework to the practical simplification
we made in the examples. Moreover, we believe our work is a first step
to exploit SVM good properties for solving control problems in state
spaces of high dimensionality. In particular, active learning strategies
could yield accurate viability kernel approximations, using very small
training sets.

ACKNOWLEDGMENT

The authors would like to thank I. Alvarez, J. P. Aubin, N. Bonneuil,
A. Lesne, C. Mullon, and P. Saint-Pierre for useful discussions.

REFERENCES

[1] J. Aubin, Viability Theory. Boston, MA: Birkhäuser, 1991.
[2] C. Bene, L. Doyen, and D. Gabay, “A viability analysis for a bio-eco-

nomic model,” Ecol. Econ., vol. 36, no. 3, pp. 385–396, 2001.
[3] C. Mullon, P. Curry, and L. Shannon, “Viability model of trophic inter-

actions in marine ecosystems,” Natural Resource Model., vol. 17, no.
1, pp. 27–58, 2004.

[4] N. Bonneuil, “Making ecosystem models viable,” Bull. Math. Biol.,
vol. 65, no. 6, pp. 1081–1094, 2003.

[5] M. Kalisiak and M. van de Panne, “Approximate safety enforcement
using computed viability envelopes,” in Proc. IEEE Int. Conf. Robot.
Automat., 2004, vol. 5, pp. 4289–4294.

[6] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Autonomous reac-
tive control for simulated humaniods,” in Proc. IEEE Int. Conf. Robot.
Animat., 2003, pp. 917–924.

[7] R. J. Spiteri, D. K. Pai, and U. M. Ascher, “Programming and control
of robots by means of differential algebraic inequalities,” IEEE Trans.
Robot. Automat., vol. 16, no. 2, pp. 135–145, Apr. 2000.

[8] P. Saint-Pierre, “Approximation of viability kernel,” Appl. Math.
Optim., vol. 29, pp. 187–209, 1994.

[9] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[10] N. Cristianini and J. Shawe-Taylor, Support Vector Machines and

Other Kernel-Based Learning Methods. Cambridge, U.K.: Cam-
bridge Univ. Press, 2000.

[11] J.-P. Aubin, Neural Networks and Qualitative Physics: A Viability Ap-
proach. Cambridge, U.K.: Cambridge Univ. Press, 1996.

[12] J. Platt, “Fast training of support sector machines using sequential min-
imal optimization,” in Advances in Kernel Methods—Support Vector
Learning, C. B. B. Schlkopf and A. Smola, Eds. Cambridge, MA:
MIT Press, 1999, ch. 12, pp. 185–208.

[13] J.-P. Aubin and P. Saint-Pierre, “An introduction to viability theory
and management of renewable resources,” in Advanced Methods for
Decision Making and Risk Management, J. Kropp, Ed., J. Scheffran,
Ed. Hauppauge, NY: Nova, 2006, ch. 2, pp. 52–96.

[14] L. Chapel, G. Deffuant, S. Martin, and C. Mullon, “Defining yield poli-
cies in a viability theory approach,” in Proc. 5th Eur. Conf. Ecolog.
Model., 2005, pp. 35–36.

