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ANTICIPATING SHOCKS IN THE STATE SPACE:
CHARACTERIZING ROBUSTNESS AND BUILDING

INCREASINGLY ROBUST EVOLUTIONS\ast 

S. MARTIN\dagger AND I. ALVAREZ\ddagger 

Abstract. Given dynamics and constraints, the viability kernel gathers points from which there
exists an evolution which remains in the constraint set. In this paper, we aim at providing more
information: we introduce and study the robustness map which associates each point of the viability
kernel with the maximal size of the unexpected disturbance in the state space the system can support
now and in the future while always remaining inside the constraint set. We first characterize the
hypograph of the robustness map in terms of a viability kernel of an augmented problem. Then the
main mathematical result is that the boundary of this hypograph is a viability domain for a particular
augmented problem and that the associated regulation map governs increasingly robust evolutions.
Given a time horizon, the problem of finding increasingly robust evolutions which reach a given
level of robustness is finally solved by the computation of the reaching time of another augmented
problem.
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1. Introduction. When dynamical systems are described by ordinary differen-
tial equations, a positively invariant set has the property that if it contains the system
state at some time, then it will contain the system state also in the future [11]. When
controlled dynamical systems are concerned, a set is controlled invariant if for all
initial conditions chosen among its elements, the trajectory remains inside the set by
means of a proper control action [11]. In the differential inclusion framework (which
encompasses ordinary differential equations and controlled dynamical systems), a vi-
able set gathers states from which at least one solution to the differential inclusion
remains inside it. The largest viable set inside a prescribed domain is called the
viability kernel [3]. When uncertain systems are considered, the concepts of robust
positively invariant set [11, 16] or invariance domain [3] require that all solutions
remain inside the set whatever the perturbation; when a control input is present,
the concepts of robust control invariant set [11, 16], discriminating domain [12], and
guaranteed viability domain [5] deal with the possibility of finding a control law that
governs viable evolutions despite the perturbations.

Regarding uncertainty, viability problems have been studied in the context of
stochastic differential inclusions (see, for instance, [9, 20]), which deal with average
behaviors, and in the context of tychastic systems defined in [4] when the worst case
behavior is considered. In the field of game theory, controller and perturbation can be
looked upon as playing a pursuit-evasion game where it is assumed that the perturba-
tion is trying to lead the state outside the constraint set and the controller is trying
to prevent it from doing so. Relying on dynamic programming, viscosity solutions of
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these games have been proposed (see, for instance, [23]), as well as formulations of
the gaming problem in the context of viability theory [12, 13].

Considering the possibility of perturbation occurrence which is not embedded in
the dynamics, and which we call unexpected disturbance, the achievement of the paper
is to provide each point of a viable set with the maximal value of a single disturbance
the system can support now and in the future without leaving this viable set. The
robustness value of an evolution is linked with the intensity of the disturbance that
could happen at any time along the evolution without causing the loss of the sys-
tem ability to remain in the constraint set. More precisely, in this paper as in [18],
we consider unexpected disturbances described by a set-valued map which associates
each state of the system with the set that gathers the possible jumps caused by the
occurrence of a nominal shock. The robustness question could be addressed by incor-
porating in the initial dynamical system the possibility of instantaneous jumps and
by studying the robust positive invariance or guaranteed viability of these auxiliary
dynamical systems (which can be hybrid ones because of the jumps in the state space
caused by the unexpected disturbances). But, from a geometric point of view the
tolerance to this kind of disturbances is higher when the state of the system is far
from the set boundary as underlined in [2] for classification systems, and the map
of the distance to the boundary (which can be approximated thanks to an algorithm
described in [2]) has been used to propose a family of robustness definitions on evo-
lutions, for instance, the minimum value of the distance along the evolution [1]. In
this paper, we pursue this idea and extend the definition of the robustness of an evo-
lution proposed by [1] to consider nominal shocks which depend on the system state.
Moreover, since we aim at finding the most robust evolutions, we go beyond the ro-
bustness of an evolution to consider the robustness of a state which is the maximal
robustness value among all the evolutions starting at this state. Our first result is to
characterize the hypograph of this robustness function as the viability kernel of an
augmented system. As in [8] for the epigraph of the value function of a discounted
infinite horizon optimal control problem, the interest of this result is to allow the
computation of the robustness function thanks to algorithms used to compute viable
sets (using Euler methods [22], level set approaches [19], or Lagrangian methods [17],
for instance). Furthermore, we exhibit sufficient conditions on the set-valued map
describing shocks for the boundary of the hypograph of the robustness function to be
a viability domain of another augmented system. The main result is then that the
regulation map associated with this viability domain allows us to govern increasingly
robust evolutions (i.e., evolutions along which the robustness is nondecreasing) which
may have the preference of a manager who would take into account the possibility of
occurrence of an unexpected disturbance.

The paper is organized as follows. We first introduce the notion of robustness
against shocks described by sets of jumps in the state space. We then link the set-
valued map describing these shocks with an extended function and exhibit sufficient
conditions for this function to have a Lipschitz property. Within the context of evolu-
tions governed by Marchaud differential inclusions, we next use this extended function
to define an augmented system and characterize its viability kernel as the hypograph
of the robustness function. Then we study properties of the robustness function and of
its hypograph. Finally, we define the set of regulations governing increasingly robust
evolutions and highlight those which reach a given level of robustness over a given
time horizon.
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2. Definition of the robustness function. Let \BbbR p be the system state space.
An evolution x(\cdot ) : t \in [0,+\infty [\rightarrow x(t) \in \BbbR p is a function of time taking its values
in \BbbR p. Let \scrC ([0,+\infty [;\BbbR p) denote the space of continuous evolutions in the state
space \BbbR p. We call an evolutionary system a set-valued map \scrS : \BbbR p \rightsquigarrow \scrC ([0,+\infty [;\BbbR p)
which associates any initial state x \in \BbbR p with a set \scrS (x) of continuous evolutions x(\cdot )
starting from x.

Given E \subset \BbbR p and x \in \BbbR p, we write x + E for \{ z \in \BbbR p | \exists y \in E such that z =
x+ y\} . Let | | \cdot | | be a norm of \BbbR p, \scrB is the unit closed ball associated with this norm,
and given x \in \BbbR p and \delta \geq 0, \scrB (x, \delta ) := \{ y \in \BbbR p| \| y  - x\| \leq \delta \} . Given F \subset E \subset \BbbR p,
we write E \setminus F for \{ x \in E | x /\in F\} and IntE(F ) for the interior of F in E:

IntE(F ) := \{ x \in F | \exists \delta > 0 such that (x+ \delta \scrB ) \cap E \subset F\} = E \setminus (E \setminus F ).

\partial E(F ) is the boundary of F in E with \partial E(F ) := \=F \setminus IntE(F ) = \=F \cap E \setminus F . When E
is the whole space, we denote by Int(F ) (respectively, \partial F ) the interior (respectively,
the boundary) of F .

To deal with uncertainty in the state space, we consider a single shock that can
happen anytime and cause a jump in the state space. More precisely, for each state
of the system x \in \BbbR p, we consider that the set of reachable states after a shock is
defined by x+mD(x) \subset \BbbR p, where m \geq 0 is the size of the anticipated disturbances.
D(x), which corresponds to possible jumps from x when m = 1, is called the set of
nominal shocks at x. For example, if \forall x \in \BbbR p, D(x) = \scrB , a nominal shock would
provoke a jump of size equal to or smaller than one in the state space.

Definition 2.1. Let us consider a set-valued map D : \BbbR p \rightsquigarrow \BbbR p. D is a map of
nominal shocks if D(x) is a star domain with respect to 0 \forall x \in \BbbR p.

Actually, when D(x) \subset \BbbR p is a star domain with respect to 0, the set of reachable
states after a shock x+mD(x) \subset \BbbR p increases with the size m \geq 0 of the anticipated
disturbances.

Let us consider now a constraint set K \subset \BbbR p, and for any x \in \BbbR p the set \scrQ K(x)
of evolutions starting at x that remain in K:

(2.1) \scrQ K(x) = \{ x(\cdot ) : [0,+\infty [\rightarrow \BbbR p | x(0) = x and \forall t \geq 0, x(t) \in K\} .

Definition 2.2 (viable evolutions). We shall say that an evolution x(\cdot ) : t \in 
[0,+\infty [\rightarrow x(t) \in \BbbR p is viable in K if x(\cdot ) \in \scrQ K(x(0)).

Then given x0 \in \BbbR p, the set of evolutions starting at x0 governed by \scrS and viable
in K, is \scrS (x0) \cap \scrQ K(x0).

Definition 2.3. Given an evolutionary system \scrS : \BbbR p \rightsquigarrow \scrC ([0,+\infty [;\BbbR p), a map
of nominal shocks D : \BbbR p \rightsquigarrow \BbbR p, and a constraint set K \subset \BbbR p,

\bullet the robustness in K of an evolution x(\cdot ) \in \scrS (x(0)) against a single shock

described by D, denoted by \rho \#\scrS ,D,K(x(\cdot )) \in [0,+\infty [\cup \{ \pm \infty \} , is the supremum
of all m \geq 0 such that, for every T \geq 0, every xT \in x(T ) +mD(x(T )), there
exists an evolution y(\cdot ) \in \scrS (xT ) that is viable in K (with the convention
sup(\emptyset ) :=  - \infty );

\bullet the robustness (against a single shock) of a state x \in \BbbR p is the supremum
of the robustness values of all the evolutions starting at x. The robustness
function \rho : \BbbR p \rightarrow [0,+\infty [\cup \{ \pm \infty \} is defined as follows:

(2.2) \rho (x0) := sup
x(\cdot )\in \scrS (x0)

\rho \#\scrS ,D,K(x(\cdot )).
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Fig. 2.1. The gray area is the graph of U for x \in [ - 1; 1].

To illustrate the above definitions, let us consider the one-dimensional differential
inclusion:

(2.3) x\prime (t) \in U(x(t))

with

(2.4)

\biggl\{ 
U(x) = [min(1 - 5x/4, 4x - 1);max(1 - 5x/4, 4x - 1)] if x \in [0; +\infty [

= [ - 1; 1] otherwise.

Figure 2.1 displays the sets U(x) for x \in [ - 1; 1].
Let the constraint set K be the line segment [ - 1; 1] and let the map of nominal

shocks D associate with all x \in \BbbR the closed one-dimensional unit ball [ - 1; 1].
When x =  - 1 or x = 1, 0 \in U(x), so K is viable and coincides with its viability

kernel.
From points x0 within [ - 1; 0.25] \cup [0.8; 1], the constant evolutions are viable and

the robustness in K of these evolutions against a single shock described by D equals
1 - | x0| = d(x0). Consequently, for all points x0 \in [ - 1; 0.25]\cup [0.8; 1] the value of the
robustness function equals 1 - | x0| .

Hence, inside ([ - 1; 0.25] \cup [0.8; 1]) \cap [0,+\infty [, along a viable evolution, functions
associating with time the x-coordinate and the robustness display opposite variations.
In particular, choosing a positive value for the variation of x on a given time interval
causes a decrease of robustness during this period.

When x0 \in ]0.25; 0.8[, \forall x(.) \in \scrS (x0) and \forall 0 < \epsilon < 0.8  - x0, one has x\prime (t) \geq 
min(4x0 - 1, 1 - 5(0.8 - \epsilon )/4) > 0 from t = 0 until x(t) = 0.8 - \epsilon . So, there exists T > 0
such that x(t) \geq 0.8 - \epsilon when t \geq T . Hence \rho (x0) = \rho (0.8) = 1 - 0.8 \forall x0 \in ]0.25; 0.8[
and \rho is discontinuous at 0.25. Figure 2.2 displays the graphs of d and \rho for x \in [ - 1; 1].

3. Associating a set-valued map describing shocks with an extended
function. Given a map of nominal shocks D : \BbbR p \rightsquigarrow \BbbR p and a closed subset K \subset \BbbR p,
we consider the extended function which associates with x \in \BbbR p the value max\{ m \geq 
0 | x+mD(x) \subset K\} . This section describes sufficient conditions onD for this function
to be Lipschitz on K. In the particular case when \forall x \in \BbbR p, D(x) = \scrB , this function
is the distance to the boundary of K on which emphasis is put in [2, 1] to consider
robustness issues.

In the following, we consider particular maps of nominal shocks.

sophie.bis
Note
"... and $\forall \epsilon$ such that $0<\epsilon<...."
would be better 
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Fig. 2.2. The graph of the distance function to the boundary of [ - 1; 1] for x \in [ - 1; 1] is drawn
with a bold gray line. The graph of the robustness function for x \in [ - 1; 1] is drawn with a black line.

Definition 3.1. Let us denote by \scrM the set gathering the maps of nominal shocks
D : \BbbR p \rightsquigarrow \BbbR p satisfying

\bullet \forall x \in \BbbR p, D(x) is compact and convex,
\bullet \exists b > 0 such that \forall x \in \BbbR p, b\scrB \subset D(x),
\bullet D is Lipschitz.1

Given D \in \scrM and x \in \BbbR p, since D(x) contains 0 and is compact and convex
with nonempty interior in \BbbR p, we can associate with D(x) the Minkowski functional
\scrG D(x) : \BbbR p \rightarrow [0,+\infty [ defined by

(3.1) \scrG D(x)(z) := inf\{ \lambda > 0 | z \in \lambda D(x)\} ,

which verifies
\bullet it is subadditive since D(x) is convex,

\bullet \scrG D(x)(z) \leq \| z\| 
b since b\scrB \subset D(x),

\bullet when \mu \geq 0, \scrG D(x)(\mu z) = \mu \scrG D(x)(z),
\bullet if \scrG D(x)(z) = 0, then z = 0, since D(x) is bounded.

We associate with this Minkowski functional the function dD(x) defined by

(3.2) dD(x)(z1, z2) := \scrG D(x)(z1  - z2).

Lemma 3.2. Let us consider C \subset \BbbR p a compact and convex subset of \BbbR p. As-
sume that there exists b > 0 such that b\scrB \subset C. Let \scrG C be the Minkowski functional
associated with C. Then \forall \epsilon > 0 and \forall x \in C + \epsilon \scrB , \scrG C(x) \leq 1 + \epsilon 

b .

Proof. If x \in C + \epsilon \scrB , there exist y \in C and z \in \BbbR p such that x = y + z with
\| z\| \leq \epsilon . From the triangle inequality , \scrG C(x) \leq \scrG C(y) + \scrG C(z). \scrG C(y) \leq 1 since

y \in C and \scrG C(z) \leq \| z\| 
b since b\scrB \subset C.

Proposition 3.3. Let us consider D \in \scrM with Lipschitz constant k; then \forall x, y, z
\in \BbbR p,

| \scrG D(x)(z) - \scrG D(y)(z)| \leq 
k

b2
| | x - y| | | | z| | .

1A set-valued map F is said to be Lipschitz if there exists a constant \lambda > 0 such that \forall x, y \in 
\BbbR p, F (x) \subset F (y) + \scrB (0, \lambda | | x - y| | ).
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Proof. If z = 0, \scrG D(x)(z) = \scrG D(y)(z) = 0. Otherwise, if z \not = 0 and \scrG D(x)(z) \geq 
\scrG D(y)(z), then

\scrG D(x)(z) - \scrG D(y)(z) =

\biggl( 
\scrG D(x)

\biggl( 
z

\scrG D(y)(z)

\biggr) 
 - 1

\biggr) 
\scrG D(y)(z)

\leq 
\biggl( 
1 +

k\| x - y\| 
b

 - 1

\biggr) 
\scrG D(y)(z)

\leq k\| x - y\| 
b

\| z\| 
b

,

where the first inequality comes from Lemma 3.2 and the second from the b-ball being
in D(y).

Proposition 3.4. Let us consider D \in \scrM and K \subset \BbbR p a nonempty compact
subset of \BbbR p. Let \partial K be the boundary of K in \BbbR p. Let dD,K : \BbbR p \rightarrow [0,+\infty [\cup \{  - \infty \} 
be the extended function defined by

(3.3) dD,K(x) :=

\biggl\{ 
minz\in \partial K(dD(x)(x, z)) if x \in K,
 - \infty otherwise.

Then there exists \~k > 0 such that \forall x, y \in K, | dD,K(x)  - dD,K(y)| \leq \~k| | x  - y| | .
Moreover,

(3.4) dD,K(x) = max\{ m \geq 0 | x+mD(x) \subset K\} 

with the convention max(\emptyset ) =  - \infty .

Proof. Since K is compact, let us introduce R := maxx,y\in K | | x - y| | < +\infty . Let
us consider x, y \in K and z \in \partial K,
(3.5)
dD(x)(x, z) \leq dD(x)(x, y) + dD(x)(y, z) triangle inequality

\leq | | x - y| | 
b + \scrG D(x)(y  - z)

\leq | | x - y| | 
b + k

b2 | | x - y| | | | y  - z| | + \scrG D(y)(y  - z) from Proposition 3.3
\leq ( 1b + kR

b2 )| | x - y| | + dD(y)(y, z) .

Then minz\in \partial K dD(x)(x, z) \leq \~k| | x - y| | +dD(y)(y, z), where \~k := 1
b+

kR
b2 , and dD,K(x) \leq 

\~k| | x  - y| | + minz\in \partial K dD(y)(y, z), so dD,K(x) \leq \~k| | x  - y| | + dD,K(y). With the same

reasoning, we get dD,K(y) \leq \~k| | x - y| | +dD,K(x) and | dD,K(x) - dD,K(y)| \leq \~k| | x - y| | .
Let us consider x \in K and m \geq 0 such that x+mD(x) \subset K. Since x+mD(x) =

\{ y \in \BbbR p | \scrG D(x)(y  - x) \leq m\} = \{ y \in \BbbR p | dD(x)(x, y) \leq m\} , so

\{ y \in \BbbR p | dD(x)(x, y) \leq m\} \subset K .

Consequently, \forall z \in \partial K, dD(x)(x, z) \geq m, dD,K(x) = minz\in \partial K dD(x)(x, z) \geq m, and
dD,K(x) \geq max\{ m \geq 0 | x+mD(x) \subset K\} .

Conversely, if \~m > max\{ m \geq 0 | x + mD(x) \subset K\} , then \exists zx \in D(x) such that
x+ \~mzx /\in K. Since x \in K, there exists 0 \leq \lambda < \~m such that z := x+ \lambda zx \in \partial K and
dD(x)(x, z) \leq \lambda < \~m. So, dD,K(x) < \~m.

Remark. Given a nonempty compact subset K \subset \BbbR p, if \forall x \in \BbbR p, D(x) = \scrB , then
dD,K(\cdot ) is the usual distance to the boundary of K for points inside K:

(3.6) dD,K(x) =

\biggl\{ 
miny\in \partial K | | x - y| | if x \in K,
 - \infty otherwise.
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4. Viability characterization of the robustness function against a single
shock. From now on, we consider evolutionary systems which are associated with
differential inclusions. Let F : \BbbR p \rightsquigarrow \BbbR p be a set-valued map associating with any
state x \in \BbbR p the set F (x) \subset \BbbR p of velocities available at state x. It defines the
differential inclusion (see [15, 6, 7, 3, 21])

(4.1) x\prime (t) \in F (x(t)).

Let us denote by W 1,1([0,+\infty [,\BbbR p) the set of absolutely continuous functions on
\BbbR p. We recall that a continuous function x(\cdot ) : [0,+\infty [\rightarrow \BbbR p is said to be absolutely
continuous if there exists a locally integrable function v such that

\forall t, s \in [0,+\infty [,

\int s

t

v(\tau )d\tau = x(s) - x(t).

In this case, for almost all t \in [0,+\infty [, x\prime (t) := v(t) and we shall say that x\prime (\cdot ) is the
weak derivative of the function x(\cdot ).

Given a set-valued map F : \BbbR p \rightsquigarrow \BbbR p, we denote by Dom(F ) the domain of F
that is the subset of \BbbR p whose elements x are such that F (x) \not = \emptyset .

Given a set-valued map F , we can define the evolutionary system \scrS : \BbbR p \rightsquigarrow 
W 1,1([0,+\infty [,\BbbR p) which associates with x0 \in \BbbR p the set of evolutions starting at x0

and governed by the differential inclusion (4.1):

(4.2) \scrS (x0) =

\biggl\{ 
x(\cdot ) : [0,+\infty [\rightarrow Dom(F ) \in W 1,1([0,+\infty [,\BbbR p) such that

x(0) = x0 and for almost all t \geq 0, x\prime (t) \in F (x(t))

\biggr\} 
.

We shall say that \scrS is the evolutionary system associated with the set-valued map F .
Let us recall the definitions of viable set and viability kernel from [3].

Definition 4.1 (viable set and viability kernel). Given a set-valued map F and
a subset K \subset Dom(F ), let \scrS be the evolutionary system associated with F and let \scrQ K

be the map associating with x \in K the set of evolutions starting at x and viable in K
(2.1).

We shall say that K is viable under \scrS if for any initial state x0 in K, there exists
x(\cdot ) \in \scrS (x0) which is viable in K, that is, x(\cdot ) \in \scrS (x0) \cap \scrQ K(x0).

We shall say that the largest closed subset of K viable under \scrS denoted by Viab\scrS (K)
(which may be empty) is the viability kernel of K for \scrS .

Given a set-valued map F : \BbbR p \rightsquigarrow \BbbR p and an upper semicontinuous function
\gamma : Dom(F ) \rightarrow [0,+\infty [ with linear growth, we consider the auxiliary differential
inclusion defined by

(4.3)

\biggl\{ 
x\prime (t) \in F (x(t)),
y\prime (t) \in [0; \gamma (x(t))].

We denote by \scrS 1 the evolutionary system associated with the differential inclu-
sion (4.3). We recall that a set-valued map F : \BbbR p \rightsquigarrow \BbbR p is a Marchaud map if
it is nontrivial, is upper semicontinuous, and has compact convex images and linear
growth, that is, there exists c > 0 such that \forall x \in Dom(F ), \| F (x)\| \leq c(\| x\| +1), with
\| F (x)\| = supy\in F (x) \| y\| . A set-valued map F : \BbbR p \rightsquigarrow \BbbR p is upper semicontinuous if
it satisfies, for any x0 \in \BbbR p,

\forall \epsilon > 0, \exists \eta > 0 such that \forall x \in \BbbR p, \| x - x0\| \leq \eta \Rightarrow F (x) \subset F (x0) + \epsilon \scrB .
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We recall that the hypograph of an extended function v : \BbbR p \rightarrow \BbbR := \BbbR \cup \{ \pm \infty \} 
is the set of pairs (x, y) \in \BbbR p \times \BbbR satisfying v(x) \geq y. It is denoted by \scrH yp(v). The
domain of the extended function v defined by Dom(v) := \{ x \in X |  - \infty < v(x) < +\infty \} 
is the set of elements on which the function is finite. The graph of v denoted by
Graph(v) is the set of pairs (x, y) \in Dom(v)\times \BbbR satisfying v(x) = y.

Theorem 4.2 (viability characterization of the robustness function against a sin-
gle shock). Given a Marchaud set-valued map F , let \scrS be the evolutionary system
associated with F and let \scrS 1 be the auxiliary evolutionary system associated with
the differential inclusion (4.3). Given K a compact subset of Dom(F ) such that
Viab\scrS (K) \not = \emptyset and a map of nominal shocks D \in \scrM , let us omit the subscripts in
d
D,Viab\scrS (K)

, d(x) := max\{ m \geq 0 | x + mD(x) \subset Viab\scrS (K)\} . Let \scrH yp(d) be the

hypograph of the extended function d. Then

(4.4) \forall x \in Dom(F ), \rho (x) = sup
(x,y)\in Viab\scrS 1

(\scrH yp(d))

y.

Moreover,

Dom(\rho ) = Dom(d) = Viab\scrS (K),(4.5)

\scrH yp(\rho ) = Viab\scrS 1(\scrH yp(d))(4.6)

and \rho is upper semicontinuous.

Proof. SinceK is closed and F is Marchaud, from the viability theorem [3, p. 121],
Viab\scrS (K) exists, is closed, and is equal to the subset of states x \in Dom(F ) such that
at least one element of \scrS (x) is viable in K.

From Proposition 3.4, it follows that d is Lipschitz on Viab\scrS (K), which is com-
pact, and by definition, d is  - \infty outside of that set. Consequently, d is upper semi-
continuous and its hypograph is closed.

Since F is Marchaud and \gamma is upper semicontinuous with linear growth on Dom(F ),
the set-valued map of the right side of (4.3) is also Marchaud. Moreover, since \scrH yp(d)
is closed, from the viability theorem [3, p. 121], Viab\scrS 1(\scrH yp(d)) exists, is closed, and
is equal to the subset of initial states such that at least one evolution starting from
them and governed by (4.3) is viable in \scrH yp(d).

If (x, y) \in Viab\scrS 1
(\scrH yp(d)), then there exist an evolution x(\cdot ) \in \scrS (x) and an

evolution y(\cdot ) : [0,+\infty [\rightarrow \BbbR such that (x(t), y(t)) \in \scrH yp(d) \forall t \geq 0, i.e., such that,
\forall t \geq 0, y(t) \leq d(x(t)). Since from (4.3), for almost all t \geq 0, y\prime (t) \geq 0, \forall t \geq 0,
y(t) \geq y and then \forall t \geq 0, y \leq d(x(t)) and y \leq inft\geq 0 d(x(t)). Moreover, let us take
m := inft\geq 0 d(x(t)), \forall t \geq 0, x(t) +mD(x(t)) \subset Viab\scrS (K) and x(\cdot ) \in \scrS (x) is robustly
viable against a single shock of maximal size m and m \leq \rho (x). Consequently, y \leq \rho (x)
and then

(4.7) \~y(x) := sup
(x,y)\in Viab\scrS 1

(\scrH yp(d))

y \leq \rho (x) .

For proving the opposite inequality, let us take \mu < \rho (x). By definition of the

supremum, there exists an evolution x(\cdot ) \in \scrS (x) such that \mu \leq \rho \#\scrS ,D,K(x(\cdot )). Hence
\forall T \geq 0, x(\cdot ) is robustly viable against a single shock of maximal size \mu at time T .
This implies that \forall p \in \mu D(x(T )), there exists a viable evolution \^x(\cdot ) \in \scrS (x(T )+ p)\cap 
\scrQ K(x(T )+p). Consequently, x(T )+p \in Viab\scrS (K) and x(T )+\mu D(x(T )) \subset Viab\scrS (K),
then \mu \leq d(x(T )) \forall T \geq 0. This implies that (x(\cdot ), \mu (\cdot ) = \mu ) \in \scrS 1(x, \mu ) is viable in
\scrH yp(d), (x, \mu ) \in Viab\scrS 1

(\scrH yp(d)) and therefore \mu \leq \~y(x). So, \~y(x) \geq \rho (x).
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Moreover, let us show that H := Viab\scrS 1
(\scrH yp(d)) is a hypograph. Given (x, y) \in 

H, there exists an evolution (x(\cdot ), y(\cdot )) governed by (4.3) starting at (x, y) and re-
maining in H. Let us take y\prime \leq y, and consider the evolution (x(\cdot ), y(\cdot ) - y + y\prime ). It
is also governed by (4.3) since the dynamics (4.3) do not depend on y(t). Moreover,
\forall t \geq 0, y(t) - y+ y\prime \leq y(t) \leq d(x(t)). Consequently, the evolution (x(\cdot ), y(\cdot ) - y+ y\prime )
remains in H. So (x, y\prime ) \in H and H is a hypograph. Finally, \scrH yp(\rho ) is closed and
then \rho is upper semicontinuous.

Let \scrS be an evolutionary system on \BbbR p, and a closed subset F \subset \BbbR p is called a
viability domain for \scrS if there exists a closed subset E \subset \BbbR p such that F \subset E and
F = Viab\scrS (E).

Corollary 4.3.

(4.8) \forall \=y \geq 0, \scrH yp(\rho ) \cap \{ (x, y) \in \BbbR p \times \BbbR | y = \=y\} 

is a viability domain for (4.3). Moreover,

(4.9) \{ x \in K | \rho (x) \geq \=y\} = Viab\scrS (K\=y),

where K\=y := \{ x \in K | x+ \=yD(x) \subset K\} = \{ x \in K | d(x) \geq \=y\} .
Proof. Let us consider the set-valued map F0 : \BbbR p \times \BbbR \rightsquigarrow \BbbR p \times \BbbR defined by

F0(x, y) = F (x)\times \{ 0\} and the associated differential inclusion:

(4.10)

\biggl\{ 
x\prime (t) \in F (x(t)),
y\prime (t) = 0.

Let \scrS 1,F0
be the evolutionary system associated with F0. Equation (4.10) is a par-

ticular case of differential inclusions described by (4.3) with \forall x \in \BbbR p, \gamma (x) = 0,
and then \forall x \in \BbbR p, \scrS 1,F0

(x) \subset \scrS 1(x). Moreover, from Theorem 4.2, \scrH yp(\rho ) =
Viab\scrS 1,F0

(\scrH yp(d)), and y remains constant along the evolutions governed by F0. So,
\forall \=y \geq 0,
(4.11)
\scrH yp(\rho ) \cap \{ (x, y) \in \BbbR p \times \BbbR | y = \=y\} = Viab\scrS 1,F0

(\scrH yp(d) \cap \{ (x, y) \in \BbbR p \times \BbbR | y = \=y\} )

and

(4.12) \{ x \in K | \rho (x) \geq \=y\} = Viab\scrS (K\=y).

Then \forall \=y \geq 0, \scrH yp(\rho ) \cap \{ (x, y) \in \BbbR p \times \BbbR | y = \=y\} is a viability domain for (4.10).
But, since \forall x \in \BbbR p, \scrS 1,F0

(x) \subset \scrS 1(x), \forall \=y \geq 0, \scrH yp(\rho ) \cap \{ (x, y) \in \BbbR p \times \BbbR | y = \=y\} 
is also a viability domain for (4.3).

5. Properties of the robustness function and of its hypograph. In this
section, we assume that the conditions of Theorem 4.2 are satisfied: we consider
an evolutionary system \scrS associated with a Marchaud map F : \BbbR p \rightsquigarrow \BbbR p, a com-
pact subset K \subset Dom(F ) such that Viab\scrS (K) \not = \emptyset , a map of nominal shocks
D : \BbbR p \rightsquigarrow \BbbR p \in \scrM , the associated extended function d : \BbbR p \rightarrow [0,+\infty [\cup \{  - \infty \} ,
d := dD,Viab\scrS (K)

(3.4) which is Lipschitz continuous on Viab\scrS (K) from Proposition

3.4, and the robustness function \rho : \BbbR p \rightarrow [0,+\infty [\cup \{  - \infty \} (2.2). The hypograph of
the robustness function \rho is a subset of \BbbR p+1 and it is closed from Theorem 4.2. Let
us consider the closed subset

(5.1) E := \partial \scrH yp(\rho ) \cap (\BbbR p \times [0,+\infty [).
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Let us set
E1 := \{ (x, y) \in E| \rho (x) = d(x) and y = \rho (x)\} ,
E2 := \{ (x, y) \in E| \rho (x) = d(x) and y < \rho (x)\} ,
E3 := \{ (x, y) \in E| \rho (x) < d(x) and y = \rho (x)\} ,
E4 := \{ (x, y) \in E| \rho (x) < d(x) and y < \rho (x)\} ,
E24 := E2 \cup E4.

Obviously, E = E1 \cup E2 \cup E3 \cup E4, E1 \cup E3 = Graph(\rho ) and Ei \cap Ej = \emptyset when
i \not = j. E1 = E \cap \partial \scrH yp(d) is closed and E2 \cup E3 \cup E4 = E \cap Int(\scrH yp(d)).

Moreover, \partial \scrH yp(\rho )(E) = \partial Viab\scrS (K)\times \{ 0\} \subset E1. Consequently, since E1 is closed,
then

(5.2) E24 \setminus IntE(E24) = E24 \cap E3.

Figure 5.1 displays sets E, E1, E2, and E3 (E4 = \emptyset ) for the illustrative example
of section 2.

Since F is a Marchaud map and K is compact, we define M := supx\in K supx\prime \in F (x)

| | x\prime | | < +\infty . Let k be the Lipschitz constant of d on Viab\scrS (K). Let us consider the
auxiliary differential inclusion on E \subset \BbbR p \times [0,+\infty [:

(5.3)

\left\{   x\prime (t) \in F (x(t)),
y\prime (t) = v(t) where v(t) \in [0; 2kM ] if (x, y) \in E \setminus IntE(E24)

= 2kM if (x, y) \in IntE(E24).

Let us denote by F2 the set-valued map of the right-hand side of differential inclusion
(5.3) and let \scrS 2 be the evolutionary system associated with F2.

Proposition 5.1. E is viable under the evolutionary system \scrS 2 (5.3).

Fig. 5.1. The graph of the distance function to the boundary of [ - 1; 1] for x \in [ - 1; 1] is drawn
with a bold gray line. E is drawn with black lines---solid ones for subset E1, a dotted one for subset
E2, and a dashed one for subset E3.
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Proof. E is closed. From the tangential characterization of a viability domain,2

a sufficient condition for E to be viable under \scrS 2 is that \forall (x, y) \in E, F2(x, y) \cap 
TE(x, y) \not = \emptyset , where TE(x, y) is the contingent cone of E at (x, y).

From Theorem 4.2, \scrH yp(\rho ) = Viab\scrS 1(\scrH yp(d)). If we choose \gamma (x) := 2kM \forall x \in 
Dom(F ) in the definition of \scrS 1 (4.3), we get \forall (x, y) \in E\cap Int(\scrH yp(d)) = E2\cup E3\cup E4,
(F (x)\times [0; 2kM ]) \cap TE(x, y) \not = \emptyset from the theorem on p. 146 in [3].

For all (x, y) \in E2\cup E3\cup E4 \setminus IntE(E24), F2(x, y) = F (x)\times [0; 2kM ], so F2(x, y)\cap 
TE(x, y) \not = \emptyset .

For all (x, y) \in IntE(E24), \exists d > 0, such that \scrB ((x, y), d) \cap E \subset IntE(E24). This

implies that there exist \^d > 0 and \=d > 0 such that \rho (x) /\in [y  - \=d, y + \=d] when x \in 
\scrB (x, \^d). Since there exist z \in F (x) and v \in [0; 2kM ] such that (z, v) \in TE(x, y), then
there exist (zn)n\in \BbbN \in \BbbR p\BbbN converging toward z, (vn)n\in \BbbN \in \BbbR \BbbN converging to v, and

(hn)n\in \BbbN \in [0,+\infty [
\BbbN 
converging to 0 such that \forall n \in \BbbN , (x+hnzn, y+hnvn) \in E. For n

large enough, xn + hnzn \in \scrB (x, \^d) and hn \leq \=d/2kM . Since (x+ hnzn, y+ hnvn) \in E,
\rho (xn + hnzn) > y + \=d. y + hn2kM \leq y + \=d, so (x + hnzn, y + hn2kM) \in E and
(z, 2kM) \in TE(x, y) and F2(x, y) \cap TE(x, y) \not = \emptyset .

Let us consider (x, y) \in E1 = E \cap \partial \scrH yp(d). \scrH yp(\rho ) \cap \{ (x, \^y) \in \BbbR p\times [0,+\infty [
| \^y = y\} is a viability domain for F0 defined by (4.10) from Corollary 4.3. Moreover,
F0(x, y) \subset F2(x, y), so F2(x, y) \cap T\scrH yp(\rho )\cap \{ (x,\^y)\in \BbbR p\times [0,+\infty [| \^y=y\} (x, y) \not = \emptyset . Then there

exist x\prime \in F (x), two sequences ((dxn)n\in \BbbN \in (\BbbR p)\BbbN , (dyn)n\in \BbbN \in [0,+\infty [\BbbN ) converging
to (x\prime , 0), and (hn)n\in \BbbN converging to 0 such that \forall n \in \BbbN ,

(x+ hndxn, y + hndyn) \in \scrH yp(\rho ) \cap \{ (x, \^y) \in \BbbR p \times [0,+\infty [| \^y = y\} .

Necessarily, \forall n \in \BbbN , dyn = 0. Moreover, \forall n \in \BbbN , \rho (x + hndxn) \geq \rho (x) = d(x) and

\rho (x + hndxn) \leq d(x + hndxn). Let us set v\prime n = \rho (x+hndxn) - \rho (x)
hn

\leq d(x+hndxn) - d(x)
hn

\leq 
k| | dxn| | . Then \forall n \in \BbbN , (x + hndxn, y + hnv

\prime 
n) \in E with 0 \leq v\prime n \leq k| | dxn| | . Conse-

quently, there exists a subsequence of (v\prime n)n\in \BbbN converging to V \in [0; kminn\in \BbbN | | dxn| | \leq 
kM ]. Finally, (x\prime , V ) \in TE(x, y) \cap F2(x, y) and F2(x, y) \cap TE(x, y) \not = \emptyset 
\forall (x, y) \in E1.

Proposition 5.3. If x \in Viab\scrS (K) and x(\cdot ) \in \scrS (x) \cap \scrQ K(x), then the function
t \rightarrow \rho (x(t)) from [0,+\infty [ to [0,+\infty [ is left-continuous.

Proof. Let k be the Lipschitz constant of d on Viab\scrS (K). Given t > 0 and \epsilon > 0,
x(\cdot ) is continuous so \exists \delta > 0 such that \forall h \leq \delta , | | x(t - h) - x(t)| | \leq \epsilon 

k .
Let us take h \leq \delta ,

(5.4)

\rho (x(t - h)) = sup
(x(t - h),y)\in Viab\scrS 1

(\scrH yp(d))
y

= sup\~x(\cdot )\in \scrS (x(t - h)) inf\tau \in [0;+\infty [ d(\~x(\tau ))

\geq sup\~x(\cdot )\in \scrS (x(t - h)) | \forall \tau \in [0;h], \~x(\tau )=x(t - h+\tau ) inf\tau \in [0;+\infty [ d(\~x(\tau ))

\geq min(min\tau \in [t - h;t] d(x(\tau )), \rho (x(t)))
\geq min(d(x(t)) - \epsilon , \rho (x(t)))
\geq \rho (x(t)) - \epsilon .

2We recall the theorem on p. 104 in [5].

Theorem 5.2 (tangential characterization of viability kernels). Let us assume that F is Mar-
chaud and that K \subset \BbbR p is a closed subset. The viability kernel Viab\scrS (K) of a subset K under
\scrS is the largest closed subset D satisfying D \subset K and \forall x \in D, RD(x(t)) := F (x) \cap TD(x) \not = \emptyset .
Furthermore, for every x \in D, there exists at least one evolution x(\cdot ) \in \scrS (x) viable in D and all
evolutions x(\cdot ) \in \scrS (x) viable in D are governed by the differential inclusion x\prime (t) \in RD(x(t)).
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Then the function t \rightarrow \rho (x(t)) is lower semicontinuous from the left. Its left
continuity follows from the previously established upper semicontinuity of \rho .

Let us consider for x \in Viab\scrS (K),

\scrS +
K(x) := \{ x(\cdot ) \in \scrS (x) \cap \scrQ K(x) | t \rightarrow \rho (x(t)) is non decreasing\} .(5.5)

Corollary 5.4. If x \in Viab\scrS (K) and x(\cdot ) \in \scrS +
K(x), then t \rightarrow \rho (x(t)) is contin-

uous.

Let us go back to the example of section 2. Since the time derivative of an
evolution can be chosen strictly positive in the vicinity of x = 0.25 ((2.3) and (2.4)), a
viable evolution can increasingly cross the threshold x = 0.25. The robustness along
this evolution experiences a sudden drop from 0.75 to 0.2; it is then discontinuous but
left-continuous since \rho (0.25) = 0.75.

Nondecreasing evolutions with ranges in [ - 1; 0] and nonincreasing evolutions with
ranges in [0; 0.25]\cup [0.8; 1] are evolutions along which the robustness is nondecreasing
and their robustness is continuous. An evolution which would cross the threshold
x = 0.25 decreasingly and then experience a sudden positive jump in robustness does
not satisfy the differential inclusion describing the dynamics.

Corollary 5.5. If x \in Viab\scrS (K) and x(\cdot ) \in \scrS +
K(x), then t \rightarrow \rho (x(t)) is Lip-

schitz continuous. Moreover, the Lipschitz constant is not greater than kM with
M := supx\in K supx\prime \in F (x) | | x\prime | | and k the Lipschitz constant of d on Viab\scrS (K).

Proof. Let us consider t1 < t2.
We first remark that if \rho (x(t)) < d(x(t)) \forall t \in [t1, t2], then \rho (x(t2)) = \rho (x(t1)) :=

\rho 0. In fact, let us define d0 = mint\in [t1,t2] d(x(t)), d0 > \rho 0 since x(\cdot ) \in \scrS +
K(x) and

d0 := \rho 0 + \delta . Since \rho (x(t1)) = \rho 0, \forall \epsilon > 0, x(t1)) /\in Viab\scrS (K\rho 0+\epsilon ), then \forall \epsilon > 0,
\forall y(\cdot ) \in \scrS (x(t1)), \exists T > 0 such that y(T ) /\in K\rho 0+\epsilon that is d(y(T )) < \rho 0 + \epsilon . Let
us consider y\ast (\cdot ) \in \scrS (x(t2)) and the concatenation y(\cdot ) of x(\cdot ) and y\ast (\cdot ) defined by
y(t) = x(t1+t) when t \in [0, t2 - t1] and y(t) = y\ast (t - (t2 - t1)) when t \geq t2 - t1. y(\cdot ) be-
longs to \scrS (x(t1)), so \forall \epsilon > 0, \exists T > 0 such that d(y(T )) < \rho 0+\epsilon . But, T > t2 - t1 when
\epsilon < \delta , then d(y\ast (T  - (t2 - t1))) < \rho 0+ \epsilon . Consequently, \forall \epsilon > 0, x(t2) /\in Viab\scrS (K\rho 0+\epsilon )
and \rho (x(t2)) \leq \rho 0.

In the general case, let us define t+1 and t - 2 by

t+1 := sup\{ t \geq t1 | \forall t\prime \in [t1, t], \rho (x(t
\prime )) < d(x(t\prime ))\} ,(5.6)

t - 2 := inf\{ t \leq t2 | \forall t\prime \in [t, t2], \rho (x(t
\prime )) < d(x(t\prime ))\} .(5.7)

If t - 2 < t+1 , then \forall t \in [t1; t2], \rho (x(t)) < d(x(t)) and from the above paragraph,
\rho (x(t2)) = \rho (x(t1)).

If t+1 \leq t - 2 ,

\bullet if t+1 \geq t1, \rho (x(t1)) = \rho (x(t+1 )) = d(x(t+1 )),

\bullet if t+1 =  - \infty , \rho (x(t1)) = d(x(t1)),

so, with T1 := max(t1, t
+
1 ), \rho (x(t1)) = d(x(T1)), and

\bullet if t - 2 \leq t2, \rho (x(t2)) = \rho (x(t - 2 )) = d(x(t - 2 )),

\bullet if t - 2 = +\infty , \rho (x(t2)) = d(x(t2)),

so, with T2 := min(t2, t
 - 
2 ), \rho (x(t2)) = d(x(T2)).
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Then

(5.8)

| \rho (x(t1)) - \rho (x(t2))| = \rho (x(t2)) - \rho (x(t1))

= \rho (x(t2)) - d(x(T2)) + d(x(T2)) - d(x(T1))

+ d(x(T1)) - \rho (x(t1))

= 0 + d(x(T2)) - d(x(T1)) + 0

\leq kM(t2  - t1) .

Proposition 5.6. If x \in Viab\scrS (K) and x(\cdot ) \in \scrS +
K(x), then (x(\cdot ), \rho (x(\cdot ))) :

[0,+\infty [\rightarrow Graph(\rho ) = E1 \cup E3 \subset E is governed by (5.3), i.e., (x(\cdot ), \rho (x(\cdot ))) \in 
\scrS 2(x, \rho (x)).

Proof. x(\cdot ) \in \scrS (x) and from Corollary 5.5, t \rightarrow \rho (x(t)) is Lipschitz with Lip-
schitz constant smaller than kM , so t \rightarrow \rho (x(t)) is absolutely continuous and for

almost all t \geq 0, the value of the weak derivative d\rho (x(t))
dt \in [0; kM ]. Consequently,

(x(\cdot ), \rho (x(\cdot ))) \in \scrS 2(x, \rho (x)).

If we assume that the restriction of the robustness function \rho to Viab\scrS (K) is
continuous, the converse is true and Dom(\scrS +

K) = Viab\scrS (K) as stated in Theorem 5.8
below.

Lemma 5.7. If the restriction of the robustness function \rho to Viab\scrS (K) is con-
tinuous, then E and the graph of \rho coincide, E = Graph(\rho ).

Proof. Graph(\rho ) = E1 \cup E3 \subset E. Let us take (x, y) \in E, from the definition of
E (5.1), 0 \leq y \leq \rho (x), consequently, x \in Viab\scrS (K). If \rho (x) = 0, y = 0 = \rho (x). In
particular, when x \in \partial Viab\scrS (K), then y = \rho (x) = 0. Otherwise, let us assume that
y < \rho (x) and let us take \epsilon = \rho (x)  - y > 0. Necessarily, x \in Int(Viab\scrS (K)). Since \rho 
is continuous at x, \exists \delta > 0 such that | | x - x\prime | | \leq \delta implies that | | \rho (x) - \rho (x\prime )| | \leq \epsilon /3.
Consequently, \forall x\prime \in \scrB (x, \delta ), \rho (x\prime ) > y+ \epsilon /2 and \scrB (x, \delta )\times [y - \epsilon /2; y+ \epsilon /2] \subset Hyp(\rho )
and (x, y) /\in E.

Theorem 5.8. Let us assume that the restriction of the robustness function \rho to
Viab\scrS (K) is continuous; then for any x \in Viab\scrS (K), there exists x(\cdot ) \in \scrS +

K(x) and
Dom(\scrS +

K) = Viab\scrS (K).

Proof. Let us consider x \in Viab\scrS (K). (x, \rho (x)) \in E, so from Theorem 5.1, there
exists (x(\cdot ), y(\cdot )) \in \scrS 2(x, \rho (x)) viable in E. Since the restriction of \rho to Viab\scrS (K)
is continuous, from Lemma 5.7, E = Graph(\rho ) and then \forall t \geq 0, \rho (x(t)) = y(t).
Moreover, t \rightarrow y(t) is nondecreasing since (x(\cdot ), y(\cdot )) is governed by (5.3), so x(\cdot ) \in 
\scrS +
K(x).

Otherwise, if we do not assume that the restriction of the robustness function \rho 
to Viab\scrS (K) is continuous, we get the following properties.

Proposition 5.9. Given x \in Viab\scrS (K) with \rho (x) < d(x) (i.e., (x, \rho (x)) \in E3),
if (x(\cdot ), y(\cdot )) \in \scrS 2(x, \rho (x)) is viable in E, then either \forall t \geq 0, y(t) = \rho (x(t)) <
d(x(t)) (i.e., (x(t), y(t)) \in E3), or \exists T \geq 0 such that y(T ) = \rho (x(T )) = d(x(T )) (i.e.,
(x(T ), y(T )) \in E1) and \forall t < T , y(t) = \rho (x(t)) < d(x(t)) (i.e., (x(t), y(t)) \in E3).

Proof. Since x(0) = x and y(0) = \rho (x) < d(x), (x(0), y(0)) \in E3. Let us assume
that there exists T > 0 such that (x(T ), y(T )) /\in E3. Let us take \~t := inf\{ t \geq 
0| (x(t), y(t)) /\in E3\} , \~t \geq 0, and (x(\~t), y(\~t)) \in E3 = E3 \cup (E3 \cap E1) \cup (E3 \cap E24).

\bullet If we assume that (x(\~t), y(\~t)) \in (E3 \cap E24), then \~t > 0 and \rho (x(\~t)) > y(\~t) =
limt\rightarrow \~t - \rho (x(t)), which contradicts Proposition 5.3.
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\bullet If we assume that (x(\~t), y(\~t)) \in E3, \rho (x(\~t)) = y(\~t) < d(x(\~t)), so there exists
h > 0 such that for 0 \leq \~h \leq h, \rho (x(\~t + \~h)) = \rho (x(\~t)) = y(\~t). From (5.3),
\forall t \geq 0, y\prime (t) \geq 0, so for 0 \leq \~h \leq h, \rho (x(\~t+ \~h)) = y(\~t+ \~h) < d(x(\~t+ \~h)) and
(x(\~t+ \~h), y(\~t+ \~h)) \in E3 which contradicts the definition of \~t.

So, (x(\~t), y(\~t)) \in (E3 \cap E1).

Proposition 5.10. Given x \in Viab\scrS (K) and (x(\cdot ), y(\cdot )) \in \scrS 2(x, \rho (x)) viable in
E, if there exists T > 0 such that \rho (x(T )) > y(T ), then there exists \~T > 0, \~T \leq T
such that (x( \~T ), y( \~T )) \in E3 \cap E24.

Proof. If \rho (x(T )) > y(T ), then (x(T ), y(T )) \in E24. Let us assume that (x(T ),
y(T )) /\in E3; then (x(T ), y(T )) \in IntE(E24) from (5.2). Let us take \=T := inf\{ t \geq 0
| \forall t\prime \in [t, T ], (x(t\prime ), y(t\prime )) \in IntE(E24)\} , \=T \in [0, T ]. From the definition of \=T ,
(x( \=T ), y( \=T )) /\in IntE(E24) and \=T < T . From Proposition 5.9, (x( \=T ), y( \=T )) /\in E3.

Let us assume that (x( \=T ), y( \=T )) \in E1; then \forall t \in ] \~T , T ], (x(t), y(t)) \in IntE(E24).
So, from (5.3) y(T ) = y( \=T ) + 2kM(T  - \=T ), but (x( \=T ), y( \=T )) \in E1, so y( \=T ) = \rho (x( \=T ))
and \rho (x(T )) - \rho (x( \=T )) \leq kM(T  - \=T ) from Proposition 5.5. So y(T ) > \rho (x(T )), which
contradicts (x(T ), y(T )) \in E. Consequently, (x( \=T ), y( \=T )) /\in E1.

Finally, (x( \=T ), y( \=T )) \in E24 \setminus IntE(E24) = E3 \cap E24 from (5.2).

Proposition 5.11. Let us consider \scrE \subset E defined by

(5.9) \scrE := E1 \cap E24 \cap E3.

Given x \in Viab\scrS (K) and (x(\cdot ), y(\cdot )) \in \scrS 2(x, \rho (x)) viable in E, let us take T :=
sup\{ t \geq 0 | \forall t\prime \in [0, t], y(t) = \rho (x(t))\} . If T < +\infty , then (x(T ), y(T )) \in \scrE .

Proof. From Proposition 5.9, (x(T ), y(T )) \in E1. From the definition of T , there
exists a sequence (tn)n\in \BbbN \rightarrow T+ such that \rho (x(tn)) > y(tn), so (x(tn), y(tn)) \in E24.
Then from Proposition 5.10, \forall n \in \BbbN , \exists t\prime n \in ]T, tn] such that (x(t\prime n), y(t

\prime 
n)) \in E24 \cap E3,

so (x(T ), y(T )) \in E24 \cap E3 and finally (x(T ), y(T )) \in \scrE .
Nevertheless, to obtain results on the existence of increasingly robust evolutions,

we have to consider additional conditions:
\bullet The set-valued map F is Lipschitz.
\bullet Let us consider the subsets of \BbbR p,
(5.10)
V 0 :=\{ x \in Viab\scrS (K)| the restriction of \rho to Viab\scrS (K) is discontinuous at x\} 

and
(5.11)

V 1 := \{ x \in V 0 | \exists (xn)n\in \BbbN \in V 0\BbbN | x = lim
n\rightarrow \infty 

xn and lim
n\rightarrow \infty 

\rho (xn) < \rho (x)\} .

Obviously, if \rho is continuous, then V 1 = V 0 = \emptyset .
Condition (A.1): V 1 = \emptyset .

\bullet With \scrE defined by (5.9), let us take

(5.12) \scrF := \{ y \geq 0 | \exists x \in Viab\scrS (K) | (x, y) \in \scrE \} \subset [0; max
x\in Viab\scrS (K)

\rho (x)] .

Condition (A.2): \scrF is a set of isolated points.

Proposition 5.12. The following statements are equivalent:
\bullet x \in V0,
\bullet there exists y < \rho (x) such that (x, y) \in E.
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Proof. If x \in V0, there exists a sequence (xn)n\in \BbbN \in (Viab\scrS (K))\BbbN such that xn

tends toward x and \rho (xn) tends toward y \not = \rho (x). For all n \in \BbbN , (xn, \rho (xn)) \in E,

which is closed, so (x, y) belongs to E. Let us define y\ast := \rho (x)+y
2 . If y > \rho (x),

then y\ast > \rho (x), and for n large enough, xn \in Viab\scrS (Ky\ast ), which is closed, and then
x \in Viab\scrS (Ky\ast ), which contradicts \rho (x) < y\ast . So y < \rho (x).

Conversely, if there exists y < \rho (x) such that (x, y) \in E, with y\ast := \rho (x)+y
2 ,

x \in \partial Viab\scrS (Ky\ast ), so there exists a sequence (xn)n\in \BbbN /\in (Viab\scrS (Ky\ast ))\BbbN which tends
toward x. Then there exists a subsequence also denoted by (xn)n\in \BbbN such that the
subsequence (\rho (xn))n\in \BbbN has a limit which is strictly smaller than \rho (x) since \rho (xn) <
y\ast \forall n \in \BbbN .

Proposition 5.13. Let us assume that the set-valued map F : \BbbR p \rightsquigarrow \BbbR p is Lips-
chitz. If x \in V 0 and (x(\cdot ), y(\cdot )) \in \scrS 2(x, \rho (x)) is viable in E, then \forall t \geq 0, x(t) \in V 0.

Proof. Let us consider (x(\cdot ), y(\cdot )) \in \scrS 2(x, \rho (x)). x(\cdot ) \in \scrS (x) and \forall t \geq 0, y(t) \geq 
\rho (x). Let us assume that (x(\cdot ), y(\cdot )) is viable in E, then \forall t \geq 0, \rho (x(t)) \geq y(t) and
then \rho (x(t)) \geq \rho (x) and x(t) \in Viab\scrS (K\rho (x)).

If x \in V 0, from Proposition 5.12, there exists \=y < \rho (x) such that (x, \=y) \in E.

Let us take \~y := \rho (x)+\=y
2 . From (4.9), x \in \partial Viab\scrS (K\~y) and x \in \partial Viab\scrS (K\rho (x)). We

remark that since F is Lipschitz, \scrS is a lower semicontinuous evolutionary system,3

and then Viab\scrS (K\~y) \cap Int(K\~y) exhibits the barrier property.4 Since x(\cdot ) is viable in
K\rho (x) and K\rho (x) \subset Int(K\~y), x(\cdot ) is also viable in Int(K\~y) and then x(\cdot ) is viable in
Viab\scrS (K\~y) \cap Int(K\~y). Since Viab\scrS (K\~y) \cap Int(K\~y) exhibits the barrier property, x(\cdot )
is actually viable in \partial Viab\scrS (K\~y) \cap Int(K\~y).

Finally, since x(\cdot ) is viable in Viab\scrS (K\rho (x)) \subset Viab\scrS (K\~y), then x(\cdot ) is viable in
\partial Viab\scrS (K\~y) \cap \partial Viab\scrS (K\rho (x)). Since \rho (x(t)) \geq \rho (x) and \~y < \rho (x), from Proposition
5.12, \forall t \geq 0, x(t) \in V 0.

Theorem 5.17. Let us assume that the set-valued map F is Lipschitz and that
conditions (A.1) and (A.2) hold true; then for any x \in Viab\scrS (K), there exists x(\cdot ) \in 
\scrS +
K(x) and Dom(\scrS +

K) = Viab\scrS (K).

Proof. Let us consider x \in Viab\scrS (K), (x, \rho (x)) \in E, which is a viability domain
for F2 from Proposition 5.1, so there exists (x(\cdot ), y(\cdot )) \in S2(x, \rho (x)) such that \forall t \geq 0,
(x(t), y(t)) \in E. Let us take T := sup\{ t \geq 0 | \forall t\prime \in [0, t], \rho (x(t\prime )) = y(t\prime )\} \geq 0, since
y(0) = y = \rho (x) = \rho (x(0)).

If T = +\infty , (x(\cdot ), \rho (x(\cdot ))) \in \scrS 2(x, \rho (x)) and x(\cdot ) \in \scrS +
K(x). Otherwise, if T < +\infty ,

from Proposition 5.11, (x(T ), y(T )) \in \scrE and y(T ) \in \scrF defined by (5.12). From the
definition of T ,

3See [5, p. 386].

Theorem 5.14. Assume that F : \BbbR p \rightsquigarrow \BbbR p is Lipschitz. Then the associated evolutionary
system \scrS F is a lower semicontinuous evolutionary system from \BbbR p into the space of continuous
functions supplied with the topology of uniform convergence on compact intervals.

4From [5, p. 408], we have the following.

Definition 5.15 (barrier property). Let D \subset \BbbR p be a subset and \scrS be an evolutionary system.

We shall say that D exhibits the barrier property if starting from any x \in 
\circ 
\partial D := D \cap \BbbR p \setminus D, all

evolutions viable in D on some time interval [0, T [ are actually viable in \partial D on [0, T [.

Theorem 5.16 (barrier property of boundaries of viability kernels). Assume that K \subset \BbbR p is
closed and that the evolutionary system \scrS is both upper and lower semicontinuous. Then the inter-
section Viab\scrS (K) \cap Int(K) of the viability kernel of K with the interior of K exhibits the barrier
property.
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(5.13) \forall \epsilon > 0, \exists h > 0, h < \epsilon | \rho (x(T + h)) > y(T + h).

We can then build a sequence (hn)n\in \BbbN such that \forall n \in \BbbN , 0 < hn, (hn)n\in \BbbN is decreasing
toward 0 and \forall n \in \BbbN , \rho (x(T + hn)) > y(T + hn).

Let us consider xn := x(T +hn) and yn := y(T +hn), \rho (xn)n\in \BbbN and (yn)n\in \BbbN tend
toward y(T ) with \forall n \in \BbbN , yn < \rho (xn), so xn \in V 0 defined by (5.10) from Proposition
5.12. Moreover, since y(T ) = \rho (x(T )) \in \scrF which is a set of isolated points from
condition (A.2), there exists \~\rho > 0 such that \forall \~y \in [\rho (x(T )); \rho (x(T )) + \~\rho ], \~y /\in \scrF , and
\forall \~x \in Viab\scrS (K), (\~x, \~y) /\in \scrE . Consequently, since \rho (xn) \rightarrow \rho (x(T )), \exists N \in \BbbN , such that
\forall n \geq N , (xn, \rho (xn)) /\in \scrE .

When n \geq N , let us consider (xn(\cdot ), yn(\cdot )) \in \scrS 2(xn, \rho (xn)) viable in E. From
Proposition 5.11, while \rho (xn(t)) \in [\rho (x(T )); \rho (x(T ))+\~\rho ], (xn(t), yn(t)) /\in \scrE , so yn(t) =
\rho (xn(t)). Moreover, from Proposition 5.13, since xn \in V 0, \forall t \geq 0, xn(t) \in V 0. Since
F2 is Marchaud, then \scrS 2 is upper semicompact,5 so there exists a subsequence of
(xn(\cdot ), yn(\cdot ))n\in \BbbN denoted by (xn(\cdot ), yn(\cdot ))n\in \BbbN again which tends toward (x1(\cdot ), y1(\cdot )) \in 
\scrS 2(x(T ), y(T )) which is also viable in E.

Let us take T1 := sup\{ t \geq 0 | \forall t\prime \in [0, t], \rho (x1(t
\prime )) = y1(t

\prime )\} \geq 0. If T1 = +\infty ,
by concatenating x(\cdot )t\in [0,T ] and x1(\cdot  - T )t\in [T,+\infty [, we get function x\ast (\cdot ) \in \scrS (x) such
that (x\ast (\cdot ), \rho (x\ast (\cdot ))) \in \scrS 2(x, \rho (x)) and x\ast (\cdot ) \in \scrS +

K(x). If T1 < +\infty , y1(T1) \in \scrF .
If we assume that y1(T1) = y(T ), from the definition of T1,

\forall \epsilon > 0, \exists h > 0, h < \epsilon | \rho (x1(T1 + h)) > y1(T1 + h).

We can then build a sequence (h1,m)m\in \BbbN such that \forall m \in \BbbN , 0 < h1,m, (h1,m)m\in \BbbN 
is decreasing toward 0 and \forall m \in \BbbN , \rho (x1(T1 + h1,m)) > y1(T1 + h1,m). Let us take
x1,m := x1(T1 + h1,m) and y1,m := y1(T1 + h1,m), (y1,m)m\in \BbbN decreases toward y1(T1)
and y1,m < \rho (x1,m).

Since limm\rightarrow +\infty \rho (x1,m) = \rho (x1(T1)) = y1(T1) = y(T ), there exists M \in \BbbN such
that \forall m \geq M , \rho (x1,m) \leq y(T )+\~\rho . But (x1,m, y1,m) = limn\rightarrow \infty (xn(T1+h1,m), yn(T1+
h1,m)) so there exists N \in \BbbN such that \forall n \geq N , \forall m \geq M , yn(T1 + h1,m) \leq y(T ) + \~\rho ,
and then yn(T1 + h1,m) = \rho (xn(T1 + h1,m)) from Proposition 5.11.

Hence x1,m = limn\rightarrow \infty xn(T1 + h1,m) with xn(T1 + h1,m) \in V 0 and limn\rightarrow \infty \rho (xn

(T1 + h1,m)) = y1,m < \rho (x1,m) so x1,m \in V1, which contradicts condition (A.1) and
necessarily y1(T1) > y(T ).

At stage p, let us set Tp := sup\{ t \geq 0 | \forall t\prime \in [0, t], \rho (xp(t
\prime )) = yp(t

\prime )\} ; if Tp < +\infty ,
we get the strictly increasing sequence (yi(Ti))i\in \{ 1,...,p\} of elements of \scrF . Since \scrF is
a discrete subset of [0,+\infty [, it is a finite or countable set. If there exists p \in \BbbN such
that Tp = +\infty , the function x\ast (\cdot ) \in \scrS (x) defined by the concatenation of x(\cdot )t\in [0,T ],
x1(\cdot  - T )t\in [T,T+T1], . . . , xi(\cdot  - (T +

\sum 
j=1...i - 1 Tj)t\in [T+

\sum 
j=1...i - 1 Tj ,T+

\sum 
j=1...i - 1 Tj+Ti],

. . . , xp(\cdot  - (T +
\sum 

j=1...p - 1 Tj)t\in [T+
\sum 

j=1...p - 1 Tj ,+\infty [ is such that (x\ast (\cdot ), \rho (x\ast (\cdot ))) \in 

5 We recall the definitions and results from [5, p. 384].

Definition 5.18. Let \scrS : \BbbR p \rightsquigarrow \scrC ([0,\infty [;\BbbR p) be an evolutionary system where both the state
space \BbbR p and the evolutionary space \scrC ([0,\infty [;\BbbR p) are topological spaces. The evolutionary system
is said to be upper semicompact at x if for every sequence xn \in \BbbR p converging to x and for every
sequence xn(\cdot ) \in \scrS (xn), there exists a subsequence xnp (\cdot ) converging to some x(\cdot ) \in \scrS (x). It is
said to be an upper semicompact if it is upper semicompact at every point x \in \BbbR p where \scrS (x) is not
empty.

Theorem 5.19. If F : \BbbR p \rightsquigarrow \BbbR p is Marchaud, the associated evolutionary system \scrS is upper
semicompact.
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\scrS 2(x, \rho (x)). Otherwise, the function x\ast (\cdot ) \in \scrS (x) defined by the concatenation of
x(\cdot )t\in [0,T ], . . . , xi(\cdot  - (T +

\sum 
j=1...i - 1 Tj)t\in [T+

\sum 
j=1...i - 1 Tj ,T+

\sum 
j=1...i - 1 Tj+Ti], . . . for

i \in \BbbN is such that (x\ast (\cdot ), \rho (x\ast (\cdot ))) \in \scrS 2(x, \rho (x)) and x\ast (\cdot ) \in \scrS +
K(x).

6. Regulating increasingly robust evolutions. In this section, we consider
particular differential inclusions provided by controlled dynamical systems (U, f) (see
[3, 5]) defined by

(6.1)

\biggl\{ 
x\prime (t) = f(x(t), u(t)),
u(t) \in U(x(t)),

where the evolution of the state x(\cdot ) ranges over a finite dimensional vector space \BbbR p

and the evolution of the control u(\cdot ) ranges over a finite dimensional vector space \BbbR q.
The set-valued map U : \BbbR p \rightsquigarrow \BbbR q describes the state-dependent constraints on the
controls (U(x) \subset \BbbR q is the set of admissible controls when the state of the system is
x) and f is a function from Graph(U) to \BbbR p.

From (U, f), we can define the set-valued map F which associates with any x
the subset F (x) := \{ f(x, u)\} u\in U(x) of velocities parameterized by u \in U(x). The
associated evolutionary system \scrS maps any initial state x to the set \scrS (x) of evolutions
x(\cdot ) starting from x and governed by

(6.2) x\prime (t) = f(x(t), u(t)) where u(t) \in U(x(t))

or, equivalently, to differential inclusion x\prime (t) \in F (x(t)). When the set-valued map F
is Marchaud, we shall say that the controlled dynamical system (U, f) is Marchaud.

As in the previous section, we assume that the conditions of Theorem 4.2 are sat-
isfied; particularly the controlled dynamical system (U, f) is Marchaud, K is compact,
Viab\scrS (K) \not = \emptyset , M = supx\in K supx\prime \in F (x) | | x\prime | | < +\infty , and k is the Lipschitz constant
on Viab\scrS (K) of the extended function associated with the map of nominal shocks
D \in \scrM .

Lemma 6.1. Let us assume that Dom(\scrS +
K) = Viab\scrS (K). If x(\cdot ) \in \scrS +

K(x), then
the evolution (x(\cdot ), \rho (x(\cdot ))) is governed by

(6.3)

\biggl\{ 
x\prime (t) = f(x(t), u(t)),
y\prime (t) = v(t)

with (u(t), v(t)) \in Rob(x(t), y(t)), where Rob is the set-valued map defined \forall (x, y) \in 
Graph(\rho ) by

(6.4) Rob(x, y) := \{ (u, v) \in U(x)\times [0; 2kM ] | (f(x, u), v) \in TGraph(\rho )(x, y)\} .

Proof. Let us consider x \in Viab\scrS (K). If x(\cdot ) \in \scrS +
K(x), (x(\cdot ), \rho (x(\cdot ))) \in \scrS 2(x, \rho (x))

from Proposition 5.6. But, \forall t \geq 0, (x(t), \rho (x(t))) \in Graph(\rho ), so for almost all
t \geq 0, (x\prime (t), \rho \prime (x(t))) \in TGraph(\rho )(x(t), \rho (x(t)))\cap F2(x(t), \rho (x(t))). Then since in the

particular case of controlled dynamical system F2(x(t), \rho (x(t))) = \{ f(x, u)\} u\in U(x) \times 
[0; 2kM ], (x(\cdot ), \rho (x(\cdot ))) is governed by (6.3) and (6.4).

The following theorem allows us to determine the maximal robustness value which
is reachable by increasingly robust evolutions and to govern increasingly robust evo-
lutions which reach a given level of robustness according to a given time horizon.
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Let us consider for (x, y, z, \tau ) \in Graph(\rho ) \times \BbbR \times \BbbR the auxiliary controlled dy-
namical system:

(6.5)

\left\{       
x\prime (t) = f(x(t), u(t)),
y\prime (t) = v(t),
z\prime (t) =  - v(t),
\tau \prime (t) =  - 1,

where (u(t), v(t)) \in Rob(x, y) with Rob(x, y) defined by (6.4). Let \scrS 3 be the evolu-
tionary system associated with (6.5). Let us consider the constraint set:

(6.6) Kc := \{ (x, y, z, \tau ) \in Graph(\rho )\times \BbbR \times \BbbR | z \geq 0 and \tau \geq 0\} 

and the target

(6.7) Cc := \{ (x, y, z, \tau ) \in Graph(\rho )\times \BbbR \times \BbbR | z = 0 and \tau \geq 0\} .

Theorem 6.2. If Dom(\scrS +
K) = Viab\scrS (K), then

(6.8) zsup(x) := sup
(x,y,z,\tau )\in Viab\scrS 3

(Kc,Cc)

z = sup
x(\cdot )\in \scrS +

K(x)

sup
t\geq 0

\rho (x(t)) - \rho (x),

where Viab\scrS 3(K
c, Cc) is the viability kernel with target.6

Moreover,
(6.9)

Tinf (x, z) := inf
(x,y,z,\tau )\in Viab\scrS 3

(Kc,Cc)
\tau = inf

x(\cdot )\in \scrS +
K(x)

inf\{ t \geq 0 | \rho (x(t)) - \rho (x) \geq z\} 

is the minimal time necessary to increase the robustness value from \rho (x) to \rho (x) + z
along an increasingly robust viable evolution starting at x.

Proof. Let us take (x, y, z, \tau ) \in Graph(\rho )\times \BbbR \times \BbbR . Since Dom(\scrS +
K) = Viab\scrS (K),

there exists x(\cdot ) \in \scrS +
K(x). Let us consider y(\cdot ) := \rho (x(\cdot )), z(\cdot ) := \rho (x)  - \rho (x(\cdot )) + z

and \tau (\cdot ) := \tau  - \cdot ; then (x(0), y(0), z(0), \tau (0)) = (x, y, z, \tau ) and from Lemma 6.1
(x(\cdot ), y(\cdot ), z(\cdot ), \tau (\cdot )) is governed by (6.5) and Dom(\scrS 3) = Graph(\rho )\times \BbbR \times \BbbR .

We remark that the dynamics of x, y, z, and \tau do not depend on z and \tau ,
so, if (x, y, z, \tau ) \in Viab\scrS 3

(Kc, Cc), then \forall z\prime such that 0 \leq z\prime \leq z, (x, y, z\prime , \tau ) \in 
Viab\scrS 3

(Kc, Cc) and \forall \tau \prime such that \tau \prime \geq \tau , (x, y, z, \tau \prime ) \in Viab\scrS 3
(Kc, Cc).

Let us take x \in Viab\scrS (K) and z < zsup(x); then there exists T such that
(x, \rho (x), z, T ) \in Viab\scrS 3(K

c, Cc). Consequently, there exist (x(\cdot ), y(\cdot ), z(\cdot ), \tau (\cdot )) gov-
erned by (6.5) such that (x(0), y(0), z(0), \tau (0)) = (x, \rho (x), z, T ) and \^T \in [0, T ] such
that (x(t), y(t), z(t), \tau (t)) \in Kc \forall t \in [0; \^T ] and z( \^T ) = 0. That is, \rho (x(t)) =
\rho (x)+ z - z(t) \forall t \in [0; \^T ] and consequently, \rho (x( \^T )) = \rho (x)+ z. Let us complete x(\cdot )
for t \geq T by \~x(\cdot  - T ) with \~x(\cdot ) \in \scrS +

K(x(T )); the concatenation is again denoted by x(\cdot ).
Then x(\cdot ) \in \scrS +

K(x), supt\geq 0 \rho (x(t)) - \rho (x) \geq z and supx(\cdot )\in \scrS +
K(x) supt\geq 0 \rho (x(t)) - \rho (x) \geq 

zsup(x).

6We recall the definition from [5, p. 86].

Definition 6.3. Let \scrS : \BbbR p \rightsquigarrow \scrC ([0,\infty [;\BbbR p) be an evolutionary system. Given C \subset K \subset \BbbR p,
the subset Viab\scrS (K,C) of initial states x0 \in K such that at least one evolution in \scrS (x0) starting at
x0 is viable in K \forall t \geq 0 or viable in K until it reaches C in finite time is called the viability kernel
of K with target C under \scrS .
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Let us take x \in Viab\scrS (K) and x(\cdot ) \in \scrS +
K(x). For all t \geq 0, (x(0), \rho (x(0)), \rho (x(t)) - 

\rho (x(0)), t) \in Viab\scrS 3
(Kc, Cc). Actually, \forall t\prime \in [0; t], (x(t\prime ), \rho (x(t\prime ))) \in Graph(\rho ),

z(t\prime ) = \rho (x(t))  - \rho (x(t\prime )) \geq 0, and \tau (t\prime ) = t  - t\prime \geq 0, and z(t) = 0. Finally,
(x, \rho (x), \rho (x(t))  - \rho (x), t) \in Viab\scrS 3(K

c, Cc), supt\geq 0 \rho (x(t))  - \rho (x) \leq zsup(x) and
supx(\cdot )\in \scrS +

K(x) supt\geq 0 \rho (x(t)) - \rho (x) \leq zsup(x).

We use the same reasoning to prove the second equality. Let us take x \in 
Viab\scrS (K), z \leq zsup(x) and T > Tinf (x, z); then (x, \rho (x), z, T ) \in Viab\scrS 3

(Kc, Cc).
Consequently, there exist (x(\cdot ), y(\cdot ), z(\cdot ), \tau (\cdot )) governed by (6.5) such that (x(0), y(0),
z(0), \tau (0)) = (x, \rho (x), z, T ), and \^T \in [0, T ] such that (x(t), y(t), z(t), \tau (t)) \in Kc \forall t \in 
[0; \^T ] and z( \^T ) = 0. That is \rho (x(t)) = \rho (x) + z  - z(t) \forall t \in [0; \^T ] and conse-
quently, \rho (x( \^T )) = \rho (x) + z. Let us complete x(\cdot ) for t \geq T by \~x(\cdot  - T ) with
\~x(\cdot ) \in \scrS +

K(x(T )); the concatenation is again denoted by x(\cdot ). Then x(\cdot ) \in \scrS +
K(x),

inf\{ t \geq 0 | \rho (x(t)) - \rho (x) \geq z\} \leq T and infx(\cdot )\in \scrS +
K(x) inf\{ t \geq 0 | \rho (x(t)) - \rho (x) \geq z\} \leq 

Tinf (x, z).
Let us take x \in Viab\scrS (K) and x(\cdot ) \in \scrS +

K(x). For all t \geq 0, (x(0), \rho (x(0)), \rho (x(t)) - 
\rho (x(0)), t) \in Viab\scrS 3

(Kc, Cc). Actually, \forall t\prime \in [0; t], (x(t\prime ), \rho (x(t\prime ))) \in Graph(\rho ),
z(t\prime ) = \rho (x(t))  - \rho (x(t\prime )) \geq 0, and \tau (t\prime ) = t  - t\prime \geq 0, and z(t) = 0. Finally,
(x, \rho (x), \rho (x(t)) - \rho (x), t) \in Viab\scrS 3

(Kc, Cc), so if there exists t \geq 0 such that \rho (x(t)) - 
\rho (x) = z, then (x, \rho (x), z, t) \in Viab\scrS 3(K

c, Cc), inf\{ t \geq 0 | \rho (x(t))  - \rho (x) \geq z\} \geq 
Tinf (x, z) and infx(\cdot )\in \scrS +

K(x) inf\{ t \geq 0 | \rho (x(t)) - \rho (x) \geq z\} \geq Tinf (x, z).

7. Conclusion. When studying the compatibility between a controlled dynam-
ical system and a constraint set, the viability kernel discriminates the states from
which there exists at least one evolution which remains in this constraint set. More-
over, the viability kernel is invariant if the sets of admissible controls are reduced to
the regulation map built upon the viability kernel. From a control perspective, the
question arises to build single-valued control maps governing viable evolutions, which
are usually called feedbacks in viability theory framework [5]. One approach is to
build a particular viable feedback as a retroaction governing optimal evolutions which
optimize an intertemporal criterion (involving integral or nonintegral functionals, with
finite or infinite time horizon). Another approach that does not require the definition
of an optimization criterion is to find constructive selections of the regulation map.
For example, the minimal selection which considers the control of the regulation map
with minimal norm can provide viable evolutions [10] under appropriate assumptions
[14]. However, when the manager considers the possibility of the occurrence of unex-
pected disturbances (perturbations which are not included in the dynamics used to
derive the viability kernel), a valuable viable feedback law may be the one that would
ensure the viability against the largest set of unexpected disturbances.

In this article, we have considered unexpected disturbances described by a single
jump in the state space that may occur at any time in the future. Regarding this type
of disturbance, we have defined the robustness function which associates each point of
the viability kernel with the maximal value of the jump size the system can support
now and in the future without leaving the viability kernel. Then we have shown how
to evaluate the robustness function since its hypograph can be regarded as a viability
kernel of an auxiliary system. Hence the robustness function can be computed thanks
to algorithms used for viability kernel approximation (Theorem 4.2). Finally, we
have shown how to build a constructive selection of the regulation map that governs
increasingly robust evolutions (Lemma 6.1) and how to govern particular increasingly
robust evolutions as solutions of a particular target reachability problem using a
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minimal time criterion (Theorem 6.2). The interest is that along such evolutions the
size of the disturbance the system can support without leaving the viability kernel is
nondecreasing with time.
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